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The formulation and calibration of constitutive models for geomaterials require material behaviour
from experiments under a wide range of triaxial loading conditions. However, failure of geomaterials
usually involves localisation of deformation that leads to very strong inhomogeneous behaviour.
Therefore, the experimentally measured macro (specimen) behaviour is a mix between very different
responses inside and outside the localisation zone and thus should not be used as a true representation
of the material responses. This paper proposes a theoretical framework that provides links between
mechanical responses inside and outside the localisation band, alongside their contributions toward the
overall behaviour of a specimen undergoing localised deformation. This meso–macro connection allows
the quantification of behaviour inside the localisation band, which is the main source of material
inelasticity, from experimentally measured specimen behaviour. Correlation between the thickness of
the localisation band and its behaviour is shown, bounded by a unique stress–deformation relationship
describing the behaviour of an idealised zero-thickness localisation band.

KEYWORDS: constitutive relations; plasticity; strain; stress path

INTRODUCTION
Strain localisation is a common failure mode of geomaterials
under various loading conditions (Lee & Haimson, 2011;
Alikarami et al., 2015; Lommatzsch et al., 2015; Ma &
Haimson, 2016; Vachaparampil & Ghassemi, 2017). With
the help of advanced techniques like X-ray tomography and
digital image correlation (DIC), recent studies (Alshibli et al.,
2017; Salvatore et al., 2017; Amirrahmat et al., 2018, 2019;
Druckrey et al., 2018) have shown that the deformation inside
the localisation zone dominates the macro volumetric and
shear deformation of specimens. Localisation of deformation
in an initially homogeneous specimen leads to the formation
of two zones with finite sizes and distinct responses
(i.e. localisation band and surrounding bulk material).
Owing to this difference, the specimen homogeneity is lost
and the specimen’s responses are mixtures of material and
structural properties. In such cases, specimen responses
involve the size and mechanical behaviour of both the
localisation band and the bulk material, as well as the band
orientation and boundary conditions. In this sense, stresses
and strains calculated from quantities measured at the
boundaries of the specimen (or obtained from volume
change of the specimen, for the case of volumetric strain)
are just volume-averaged quantities and cannot correctly
represent the true material behaviour. As a consequence, it is
fundamentally incorrect to use these volume-averaged quan-
tities for the calibration or validation of continuum models

based on critical state soil mechanics, given this theory is
valid only inside the shear band (Desrues et al., 2018), where
the assumption of homogeneous deformation can still be
relatively reasonable.
The importance of localised failure and explicit incorpor-

ation of shear band properties (behaviour, orientation and
size) in constitutive modelling of geomaterials have been
addressed in several studies (Nguyen et al., 2012, 2014,
2016a, 2016b, 2017; Haghighat & Pietruszczak, 2015, 2016;
Pietruszczak & Haghighat, 2015; Moallemi & Pietruszczak,
2017; Mohammadi & Pietruszczak, 2019; Tran et al., 2019;
Wang et al., 2019; Nguyen& Bui, 2020). These models possess
a shear band and corresponding properties, embedded in the
constitutive structure, making them able to generate the
macro responses from given properties of both the shear band
and its surrounding volume. However, the lack of an explicit
link to work out the shear band behaviour, which could be
reasonably considered as true material behaviour, from
conventional multi-axial tests makes the calibration of
these models difficult. Although this difficulty can be
partly alleviated by the use of fracture energies representing
the dissipation capacity of the localisation band (e.g. Nguyen
et al., 2014; Mir et al., 2015; Le et al., 2017, 2018, 2019; Mir,
2017; Moallemi & Pietruszczak, 2017; Le, 2019; Tran et al.,
2019; Wang et al., 2019), the use of such scalar properties still
impairs the calibration and prediction of these models. This
is because, for a given fracture energy value, as the area under
the stress–displacement curve, it is possible in principle to
have an infinite number of curves representing the shear band
(or crack) behaviour. It is also worth mentioning that among
the constitutive models listed above, those (Nguyen et al.,
2016b, 2017) based on breakage mechanics (Einav, 2007a,
2007b) can also overcome the challenges of calibration
because all their parameters can be obtained from isotropic
compression tests under homogeneous deformation. However,
this is only possible in dealing with compaction localisation
under high confining pressures where the validity of these
models can be well justified.
In the current paper, the authors propose a simple, yet

effective and versatile, approach for analysing experimental
data to obtain both kinematic (i.e. strain, displacement jump)
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and static (i.e. stress, traction) behaviour of the localisation
band and its surrounding bulk. Based on the constitutive
structure, proposed in the so-called double-scale approach
(Nguyen et al., 2012, 2014, 2016a; Nguyen & Bui, 2020),
the links between behaviour inside the localisation band and
the volume-averaged responses of the whole specimen can
be explicitly established. The stresses inside and outside the
localisation band can thus be obtained from the deformation
data and macro stresses measured in experiments. This
bridges the gap of knowledge in experimental studies where
full-field strains can be obtained with reasonable reliability,
but stress fields cannot be. The proposed approach is tailored
for analysing triaxial test data on sand and soft rocks, with
further kinematic and static assumptions required due to
the lack of data from conventional triaxial tests. The
parametric study on the correlation between the shear band
thickness and its behaviour shows a unique relationship
between stresses at the boundary of the shear band and
corresponding relative displacement between its two sides.
This unique relationship can be used to describe the behav-
iour of the localisation band under appropriate conditions
(e.g. thin shear band).

EXPERIMENTAL OBSERVATIONS AND THE NEED
FOR ATHEORETICAL FRAMEWORK
CONNECTING MESO–MACRO BEHAVIOUR

The keys for analysing experimental data of localised
failures can be obtained from examining typical results
of a triaxial test, conducted on Hostun sand, associated
with X-ray tomography and DIC, as shown in Fig. 1

(Alikarami et al., 2015). The figure shows a rapid increase
in shear stress, reaching its peak and gradually coming to a
residual state. The volumetric strain is shown to experience a
short period of compaction before quickly reducing (dilating)
and reaching its stable state. The strain profiles, obtained
from DIC (Fig. 1(b)), indicate that the deformations of
the specimens are mainly governed by what happens inside
the localisation band, while the zone outside the band (bulk)
undergoes relatively small deformation. Both incremental
shear and volumetric strain fields from experiments indicate
that a finite-thickness shear band appears from early
stages, even before stress reaches its peak (see also Alshibli
et al., 2017; Desrues et al., 2018; Druckrey et al., 2018;
Amirrahmat et al., 2019). Experimental results measured by
strain gauges attached directly on sandstone specimens (see
Lee & Haimson, 2011; Ma & Haimson, 2016) and DIC
analyses (Dawidowski et al., 2015; Verma et al., 2019) show
that the bulk material undergoes compaction at first and then
expansion along an elastic trajectory due to the relaxation of
stress in the post-peak stage.
Since there are significant differences in behaviour between

the localisation band and the outer bulk material, the stress
and strain measured in experiments should not be simply
taken as the intrinsic material behaviour. For example, given
the deformed shape in Figs 2(a) and 2(b), the stresses
measured on the boundaries of the specimen (see Figs 2(c)
and 2(d)), are not good representatives of the material beha-
viour, as they are mixtures of responses inside and outside
the localisation band. Similarly, as seen from the deformed
shape in Fig. 2(b), the averaged axial strain of the specimen is
governed not only by axial deformation, as normally
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Fig. 1. Behaviour of dry Hostun sand in triaxial tests under confinement of 100 kPa: (a) shear stress and volumetric strain plotted against axial
strain; (b) contours of incremental shear and volumetric strains (Alikarami et al., 2015). A full-colour version of this figure can be found on the ICE
Virtual Library (www.icevirtuallibrary.com)
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Fig. 2. Illustration of the relationship between measured stress/deformation and shear band behaviour: (a) final failure shape of dry Hostun sand
specimen under triaxial loading (Alikarami et al., 2015); (b) idealised deformed shape; (c) stresses at the boundaries; (d) equilibrium
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considered, but also by shear deformation induced by an
inclined localisation band. Therefore, the behaviour and con-
tributions of these two components should be distinguished by
properly interpreting and analysing the measured data. To this
end, a meso–macro relationship to connect the responses
inside the localisation band with the averaged (macro)
responses is needed and will be presented in the next section.

THE PROPOSED MESO–MACRO CONNECTION
In this section, fundamental relationships to connect

responses at meso- and macro-scale are presented, together
with a specific application to analysing the experimental
results of triaxial tests. The readers are referred to the double-
scale approach (Nguyen et al., 2012, 2014, 2016a; Nguyen &
Bui, 2020) for more details on the formulation and modelling
aspects.

Fundamental relationships
The approach is constructed based on a volume element,

Ω, featuring a localisation band with inclined angle θ as
illustrated in Fig. 3. The band is characterised by its normal
vector n, surface area A and thickness h, all of which can
be determined from experiments with the assumption of
a planar localisation band (Fig. 3). The strain increment
inside the localisation band (δεi) can be expressed in terms
of the homogeneous strain increment of the bulk material
(δεo) and a kinematically enhanced strain rate component
(Neilsen & Schreyer, 1993) as

δεi ¼ δεo þ 1
h

n� δuð Þs¼ δεo þ 1
2h

n� δuþ δu� nð Þ ð1Þ

in which δu is the incremental displacement jump vector
across the localisation band. It should be noted that the
superscripts ‘i’ and ‘o’ in these equations simply denote ‘inner
localisation band’ and ‘outer bulk material’ which are the
subjects being referred to. The macro volume-averaged strain
increment of the whole specimen (δε) can then be expressed
as a linear combination of δεi and δεo, following mixture
theory:

δε ¼ f δεi þ 1� fð Þδεo ð2Þ
where f ¼ hA=Ω is the volume fraction of the band cal-
culated from other measurements in experiments (see Fig. 3).
Using the virtual work equation (Hill, 1963) in the form,
σ : δε ¼ f σi : δεi þ 1� fð Þσo : δεo, in combination with
equations (1) and (2), the following equalities can be

obtained (Nguyen et al., 2016a):

t ¼ ti ¼ to ð3Þ

σ ¼ f σi þ 1� fð Þσo ð4Þ
where t ¼ σ � n, ti ¼ σi � n and to ¼ σo � n are the tractions
associated with, respectively, volume-averaged stress (σ),
stress inside (σi) and outside (σo) the localisation band.
With the assumption of homogeneous behaviour inside and
outside the localisation band, further connections between
responses at meso- and macro-scale can be established from
these fundamental relationships, giving rise to the calculation
of quantities at one scale given those at the other scale (see
Appendix). However, in commonly used experiments such as
triaxial tests, the data obtained are not solely measured for
macro- or meso-scale, but a mixture of both depending on
the way the experiments are executed. The measured data, in
these cases, should be carefully interpreted and analysed
based on the fundamental relationships above to calculate
other unknown quantities. It should also be noticed that
since the approach is formulated based on the failure
involving a relatively straight localisation band commonly
exhibited in experiments, it can be applied to a large volume
of existing experimental data. For more complex localised
failure patterns (e.g. Desrues et al., 1996), further develop-
ments are needed to obtain reasonable results (e.g. initial
work on localised failure without a clear band in Pour et al.
(2020)). This is beyond the scope of the current paper andwill
be addressed in the authors’ future work.

Application to triaxial tests
In most triaxial tests, the axial stress σ11, alongside

pre-defined horizontal stress σ22 ¼ σ33, are recorded. Axial
strain, ε11, is also usually measured by using linear variable
differential transformers (LVDTs). Also, from the volume
change of pore fluid in specimens or with the help of
three-dimensional (3D) images tomography, the volumetric
strain, εv, can be determined. The task then is to map those
quantities into the connection described above and to
determine the other quantities.

Determination of strains inside the localisation band. The
three measured stresses should be considered as stresses of
the bulk (σo), since this zone can be reasonably assumed
to undergo relatively small shear deformation compared to
the shear band (Figs 2(a) and 2(b)). Because the axial and
volumetric strain are measured based on the overall defor-
mation of the whole specimen, they should be considered as
volume-averaged deformation. Up to this point, the inputs
for the analysis include bulk stress (σo) the volume-averaged
axial and volumetric strain (ε11, εv) and the expected outputs
are stresses, strains inside the localisation band, together with
volume-averaged stresses and strains.
The first step is to determine the elastic properties of the

material based on beginning steps of the loading where the
whole specimen can still be assumed to be homogeneous and
in the elastic range, as illustrated in Fig. 1(a). By using the
triaxial conditions: δε22 ¼ δε33; δσ22 ¼ 0 for the general
Hooke’s law, the bulk modulus K can be computed from
the axial stress and strain as

K ¼ 2þ ð2α=3Þ½ �
2þ ð2α=3Þ½ � 1þ ð4α=3Þ½ � � 2 1� ð2α=3Þ½ �2

δσ11
δε11

ð5Þ

where α ¼ 3 1� 2υð Þ=2 1þ υð Þ with υ being the Poisson’s
ratio. For the case of soil/sand, the bulk modulus K is usually
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Fig. 3. Localised failure in a cylindrical specimen (after Nguyen et al,
2016b)
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assumed to be pressure dependent: K ¼ ν p′=κ (Wood, 1991),
where ν ¼ 1=ð1� nÞ is the specific volume change, calculated
from porosity n. Therefore parameter κ can be obtained as

κ ¼ ν p′
K

ð6Þ

From these elastic properties, the standard elastic tangent
stiffness Do can be computed. As the behaviour of the bulk
material is considered to be elastic, its strain increment can be
calculated in a straightforward way from measured stress as

δεo ¼ Do�1 : δσo ð7Þ
Substituting equation (1) into equation (2) for the

calculation of volumetric strain increment δεv and solving
for normal displacement jump increment δun in the local
coordinate system, one obtains

δun ¼ δεv � δεo11 � δεo22 � δεo33
� � h

f
ð8Þ

Using equations (1) and (2) for strain increment δε11, the
shear displacement jump increment in the local coordinate
system (Onts in Fig. 4) can be calculated by

δus ¼
δuncosθ � δε11 � δεo11

� �
L

sinθ
ð9Þ

It is noted that in the above derivation, the transformation
of displacement jump increment from the global coordinate
system (O123) to the local one (Onts in Fig. 4), δu1 ¼
δun cos θ � δus sin θ, is used. The incremental displacement
jump vector in the global coordinate system, δu, can then be
calculated from those in the local coordinate system. Strain
increment inside the localisation band, δεi and volume-
averaged strain increment, δε can then be calculated in a
straightforward way by equations (1) and (2).

Determination of stresses inside the localisation band. Using
the second equality in equation (3), the traction increment on
the local coordinate system of the localisation band, δtilocal,
can be calculated as

δtilocal ¼ R � δσo � n ð10Þ
where R is the standard transformation matrix from the
global to the local coordinate system. From the equilibrium
shown in the local coordinate system (see Fig. 4), the normal
and shear stress increments inside the localisation band can

be obtained as

δσin ¼ δtn and δσins ¼ δts ð11Þ
It is reasonable to assume that the normal stress in the

t-axis is equal to the confining pressure σit ¼ σ33 (δσit ¼
δσ33 ¼ 0) and other shear stresses are zero σist ¼ σint ¼ 0 due
to symmetry. As illustrated in Fig. 4, the total form of σis can
be calculated from the equilibrium of a segment cut from the
side of the specimen. Since it is complicated to calculate σis
from the segment in three dimensions, the calculation of this
stress is approximated from a simplified equilibrium in two
dimensions (see Fig. 4) for simplicity. The authors acknowl-
edge that this is a strong assumption, the consequence of
which is yet to be explored, given insufficient data from
experiments and the challenges in analysing a boundary
value problem analytically. In association with the current
deformation of the localisation band (reflected through the
angle β), σis is calculated as

σis ¼ σinstanβ þ σ33 ð12Þ
in which tanβ is calculated from the deformation as

tanβ ¼ htanθ � us
hþ un

ð13Þ

It should be noted that this approximation of σis is only
reasonable when h is relatively large compared to us. For the
case of more brittle materials, namely, sandstone or concrete,
h is usually very small (i.e. h ! 0), the angle β calculated in
this manner would become negative (i.e. tanβ ! �us=un)
leading to a significant reduction of σis and an increase of
shear stress, q. A possible alternative to avoid this unphysical
increase of shear stress is to assume that σis remains
unchanged once localisation initiates. This alternative will
be investigated further by way of an example of sandstone
presented in the later section entitled ‘Analysing data from
tests by Takano et al. (2015)’. Now that the stress increments
of the localisation band and the bulk material are known, the
increment of volume-averaged stress can be calculated using
the incremental form of equation (4).

ANALYSIS OF EXPERIMENTAL DATA
Analysing data from tests by Alikarami et al. (2015)
In this section, the proposed framework is applied to

analysing the results of triaxial tests conducted on cylindrical
samples of Ottawa sand with a diameter of 11 mm and
a height of 22 mm under three confining pressure levels;
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σ33 ¼ 0�1; 4 and 7 MPa. From the experimental results, the
localisation band thickness, failure angle and initial porosity
of each test case are shown in Table 1.
With Poisson’s ratio υ ¼ 0�2, the elastic properties of each

specimen are calibrated and presented in Table 1. It can be
seen that the values of computed parameter κ from separate
experimental results are comparable with each other. From
the original data set, the results obtained show the difference
in deformation across the specimen (see Fig. 5). The onset of
localisation can be identified from the bifurcation of
deformation, which occurs at ε11 ¼ 3–5%, illustrated by the
dashed box in Fig. 5. This is close to experimental observ-
ations by Alikarami et al. (2015) using X-ray tomography
and DIC. After the localisation band appears, the axial strain
inside the localisation band, εi11, increases rapidly, while the
strain of the bulk material, εo11, decreases (see the insets in
Fig. 5) due to relaxation as analysed in the earlier section
entitled ‘Experimental observations and the need for a
theoretical framework connecting meso–macro behaviour’.
The evolution of volumetric strain, plotted in Fig. 6, shows

that the bulk material undergoes compaction at first and then
small expansion due to stress relaxation, as expected. The
volumetric strain of the localisation band, on the other hand,
experiences a large expansion due to dilation. This result

from the analysis is supported by experimental observations
where porosity inside the localisation band is seen to increase
in later stages of loading (Fig. 9 in Alikarami et al. (2015)).
The combination of these two components (i.e. localisation
band and outer bulk material) results in the volume-averaged
volumetric strain of the whole specimen (see Fig. 6). The
proposed simple scheme can also capture the change of
volumetric strain over a period of loading span, indicated
as the space between two dashed lines in Fig. 6. In early
stages of the tests, the volumetric strain inside the localisation
band shows negative increments, corresponding to the
dilation. Toward the end of the experiments, the volumetric
strain in the band either remains constant under low
confinements (its increment is zero as shown in Fig. 6(a))
or becomes compactive under high confinements (its incre-
ment is positive as shown in Figs 6(b) and 6(c)). These results
from the analysis are consistent with the incremental
volumetric strain fields captured by DIC (see Fig. 6). Fig. 7
shows the jumps of both normal stress (σs) and normal strain
(εs) in the local coordinate system for the case σ33 ¼ 4 MPa.
These jumps indicate the distinct behaviour of the band
compared to that of its surrounding material described
above. The plots also show the onset of the localisation,
marked by a bifurcation of responses (see Figs 7(a) and 7(b)).

Table 1. Localisation band geometries and obtained elastic properties of the material

Band thickness, h: mm Failure angle, θ: degrees Porosity, n: % Modulus, K : MPa Parameter, κ

σ33 ¼ 0�1 3·9 52 32·1 10·6 0·014
σ33 ¼ 4 4·8 50 29·1 294 0·019
σ33 ¼ 7 4 49 27·3 599·2 0·017
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The shear stress obtained, q ¼ ffiffiffiffiffiffiffi
3J2

p
(J2 being the second

invariant of the deviatoric stress tensor) plotted in Fig. 8
shows shear behaviour of different components in the speci-
mens. While the shear stress of the bulk material evolves
along the elastic trajectory, the shear stress of the localisation
band undergoes softening with much larger deformation.
The volume-averaged behaviour is a combination of these
two responses. The traction–displacement jump behaviour in
the local coordinate system of the localisation band, plotted
in Fig. 9, shows that an increase of confining pressure leads to
higher normal traction on the failure plane, reducing the
dilation under shearing.

The stress paths obtained for the localisation band, plotted
in Fig. 10, show a clear deviation from the conventional path,
Δq=Δp ¼ 3 (p ¼ I1=3 with I1 being the first invariant of the
stress tensor), which are usually considered as stress paths of

the material in triaxial stress condition. The maximum and
residual shear stress inside the localisation band can be used
to formulate a so-called yield-failure loading function
controlling the stress evolution from initial yield to final
failure (dashed black line in Fig. 10(a)). Alternatively, the
traction path (i.e. tn–ts path), as shown in Fig. 10(b), can also
be used for formulation and calibration of this yield-failure
surface. These stress paths, together with the behaviour
obtained (i.e. Figs 8 and 9), provide a rigorous basis for
building a good constitutive model for geomaterials, as
demonstrated in Le et al. (2018).

Analysing data from tests by Takano et al. (2015)
The experimental data used in this section were obtained

from cylindrical specimens with a diameter of 50 mm and a
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height of 100 mm, under two confining stresses, σ33 ¼
50 and 150 kPa. Given void ratio e ¼ 0�66 and Poisson’s
ratio = 0�2, the parameter κ in each case is calculated as κ ¼
0�017 and 0�011, respectively. Based on the volumetric strain
contour in Takano et al. (2015), the thicknesses of the localis-
ation bands are taken as h ¼ 20 and 21 mm, while their
orientations are θ ¼ 55° and 50°, respectively.
The obtained shear stress plotted against shear strain

(εs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4J ′2=3

p
with J ′2 being the second deviatoric strain

invariant) in Fig. 11 indicates a clear difference between
the volume-averaged responses and that of the localisation

band. Three sets of volumetric strains, obtained from
analysing the experimental data and plotted in Fig. 12,
also reveal the dilatant trend inside the localisation
band. This is consistent with the incremental volume strain
fields measured by DIC (insets between dashed lines in
Fig. 12). The obtained shear strains plotted in Figs 13(a)
and 14(a) show that the shear deformation of the localisation
band increases quickly, while the shear strain of the bulk
material decreases due to relaxation. Since the thickness
of the localisation band is assumed to be constant through-
out the analysis and the deformation inside the band is
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assumed to be uniform, there are discrepancies between the
experimentally measured strain and that obtained using the
proposed framework (see Figs 13(b) and 14(b)). Nonetheless,
the deformation profiles obtained and those from exper-
iments are comparable, especially when the localisation band
becomes clear in later stages of the experiment (i.e. incre-
ments B–C and C–D).

The traction–displacement jump responses obtained,
which are plotted in Figs 15(a) and 15(b), show that both
normal and shear tractions exhibit non-linear behaviour
before the softening phase. The normal–shear displacement
jump relationship, plotted in Fig. 15(c), confirms the dilation
of the localisation band presented earlier in Fig. 12. The
figure also shows a decrease of dilation when confinement
increases, as expected. Fig. 16(a) shows the deviation of stress
paths in triaxial stress space, together with the paths of
traction inside the localisation band (Fig. 16(b)), which can

all be used to formulate a loading function of a continuum
model to capture intrinsic material behaviour.

Analysing data from tests by Wong et al. (1997)
The data analysed in this section were acquired from

experiments on Adamswiller sandstone samples having a
diameter of 18·4 mm and a length of 38·1 mm, under three
confining pressure levels, σ33 ¼ 5; 20 and 40 MPa. The band
orientations in three cases are recorded to be θ ¼
57°; 40° and 30°. The thickness of the localisation band is
taken as h ¼ 2 mm. The material elastic modulus under each
confinement is calculated as K ¼ 35; 39 and 39 GPa. As
explained in the derivation of equations (12) and (13), since
the thickness of the localisation band in this case is very
small, the local axial stress in the band direction, σis, is
assumed to be unchanged beyond the elastic range.
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The volumetric strain obtained, plotted in Fig. 17, shows
that after the homogeneous deformation stage, the volu-
metric strain inside the localisation band varies significantly.
This is because the thickness of the localisation band is very
small and thus its strain becomes sensitive to the displace-
ment. The figure shows a dilation trend inside the localisation
band under low confinement and a compaction trend under
higher confining pressures, as expected. The large defor-
mation of the localisation band can also be seen in the shear
stress–axial strain curves in Fig. 18. The traction–displace-
ment jump behaviour of the localisation band, presented in
Fig. 19, further confirms the expansion/compaction behav-
iour in the post-peak stage.

Verification against synthetic data from numerical simulation
Since current experimental techniques are unable to

obtain stress fields in the localisation band, verification

of the proposed approach is performed against results from
numerical experiments. To this end, the results from a
numerical experiment using the authors’ earlier model (Le
et al, 2018), with an embedded localisation zone idealised as
a cohesive-frictional surface, are used as synthetic exper-
imental data to be analysed using the proposed approach.
These synthetic results were validated against experimental
data of triaxial compression testing on Bentheim sandstone
under a confining pressure σ33 ¼ 10 MPa, details of which
can be found in Le et al. (2018).
For verification, the proposed approach requires macro

strain increments (δε11, δεv) and the stress increment of the
bulk material (δσo) from the numerical experiment above to
obtain the behaviour inside the localisation band. Fig. 20(a)
shows good agreement between the behaviour obtained using
the proposed approach and that by the numerical exper-
iment. This verifies the accuracy of the proposed approach in
analysing localised failure and experimental data for
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behaviour inside the localisation band. Employing the
assumption on local stress increment of a band of finite
thickness (see Fig. 4 with h ¼ 4 mm), the proposed approach
can result in the triaxiality condition inside the localisation
band. Fig. 20(b) shows a clear distinction between the beha-
viour inside the localisation band, which can be considered
as intrinsic material responses, and the volume-averaged
behaviour of the whole specimen, which is usually considered
in existing experiments as macro stress in triaxial tests.

The above results are based on the assumption that the
thickness of the localisation band is not evolving during
deformation. However, both experiments and discrete-
element method (DEM) simulations (e.g. Alikarami et al.,

2015; Kawamoto et al, 2018; Verma et al, 2019) show that the
localisation band thickness does not remain constant, but
evolves under loading. In addition, the stress and defor-
mation are not uniform, but vary inside the localisation
band, which adds more difficulties in determining the thick-
ness of the band. This makes it hard (or even impossible) at
present to have a good correlation between the stresses inside
the localisation band obtained using the proposed approach
and those from numerical simulation using DEM. Although
a theoretical approach taking into account the evolving
thickness of the localisation band has been proposed in the
authors’ recent work (Nguyen & Bui, 2020), these issues still
require further theoretical development and investigation.
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PARAMETRIC STUDYAND IMPLICATION ON
CONSTITUTIVE MODELLING
A parametric study is performed on the experimental data

of Ottawa sand under confining stress σ33 ¼ 4 MPa (pre-
vious section entitled ‘Analysing data from tests by Alikarami
et al. (2015)’) with different values of thickness, h ¼
3�5; 4�8 and 6�5 mm, to investigate its influence on the
results obtained. The results plotted in Figs 21(a) and 21(b)
show that an increase of the band thickness leads to a
decrease in the magnitudes of strain inside the localisation
band (i.e. both axial and volumetric strain), while the beha-
viour of the bulk material and the traction–displacement
jump responses of the localisation band are unchanged.
Given the same displacement jump, it is understandable that
the strains inside the localisation band increase with the
decrease in the band thickness. Since the size of the band is
taken into account when calculating volume-averaged strain,
as seen in equation (2), the volume-averaged strain obtained
is unchanged. This parametric study indicates the interde-
pendence of mechanical behaviour and thickness of the
localisation band, as also explained in Nguyen & Houlsby
(2007), Nguyen & Korsunsky (2008) and Nguyen et al.
(2014).
A parametric study on the effect of localisation band

orientation on the results obtained is then performed on the
same set of data. The results, plotted in Fig. 22, show that an
increase in the orientation of the band leads to a decrease
in strain (Figs 22(a) and 22(b)) and displacement jumps
inside the localisation band (Fig. 22(c)). This is reasonable
because, given the same axial displacement, an increase in
the orientation of the band leads to larger volume fractions

and consequently a decrease of displacement jumps, calcu-
lated by equations (8) and (9). As a result, both stress–strain
and traction–displacement jump responses significantly
change with the change of the orientation. These results of
parametric studies on the thickness and orientation of the
localisation band emphasise the importance of these inputs
to obtain reliable results.
To further illustrate the difference of the proposed

approach and conventional ones in data analysis, the
obtained shear and hydrostatic responses of the localisation
band for the case of Ottawa sand under confinement of
4MPa (see earlier section entitled ‘Analysing data from tests
by Alikarami et al. (2015)’) are now plotted in Fig. 23,
alongside those by conventional interpretation. As shown in
the figure, both shear strain, εs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4J ′2=3

p
and volumetric

strain inside the localisation band are much larger than the
averaged behaviour, which is usually interpreted as intrinsic
material behaviour and used for the development of con-
stitutive models.
A better modelling approach, to the best of the current

authors’ knowledge, should accommodate the difference in
behaviour of the localisation band and its outer bulk material
(see Figs 23(c) and 23(d)). Specifically, for failures involving
thin localisation bands (e.g. sandstone), the triaxiality
condition might not be well reflected inside the band (see
discussions below equations (12) and (13)). Therefore,
constitutive modelling frameworks, in this case, should be
based on a cohesive-frictional model embedded in a volume
element, since they require only normal and shear tractions
on the boundary of the localisation band (e.g. Nguyen et al.,
2014; Mir et al., 2015; Le et al., 2017, 2018, 2019; Mir, 2017;
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Tran et al., 2019; Wang et al., 2019). In contrast, for soils with
no cohesion, the thickness of the localisation band, although
small, is still significant and hence can result in a stress state
inside the band closer to triaxial conditions (see examples
in the earlier sections entitled ‘Analysing data from tests
by Alikarami et al. (2015)’ and ‘Analysing data from tests
by Takano et al. (2015)’). As a result, a framework with a
continuum constitutive model for the behaviour inside the
band is a more reasonable choice to capture the material
behaviour in this case (e.g. Nguyen et al., 2016a, 2016b;
Nguyen & Bui, 2020). In both cases, the detailed evolution of
stress and deformation inside the localisation band, obtained
by the proposed framework, are crucial for calibration of
such types of constitutive models.

CONCLUSIONS
This study proposes a new approach to the interpretation

and analysis of experimental data that involves localised
failure of geomaterials. The connection between meso beha-
viour of the localisation band and averaged responses of
the whole specimen is employed for the analysis of experi-
mental data involving localised failure. This provides a
simple yet effective means to correctly obtain the evolution
of both stress and deformation inside the localisation band,
which are not measurable in standard experiments. The
results obtained from the analysis of triaxial test data show
that the true material behaviour, mostly taking place inside
the localisation band, is far different from the macro
volume-averaged responses that are usually and incorrectly
considered as material behaviour.

The relationship between stress acting on the boundary of
the localisation band and the relative displacements between
its two sides is shown to be unique regardless of the
localisation thickness and hence is free from the assumption
of non-evolving band thickness. This constitutive relation-
ship can well describe the behaviour of the localisation band
in appropriate cases (i.e. a thin shear band). Also, while
specimen specification in existing testing standards is suitable
to yield simple failure modes for understanding material
behaviour, the distinction between behaviour inside and
outside the localisation band suggests more loading paths
should be investigated to explore the material responses fully.
This will be a necessity for both understanding and develop-
ment of constitutive models.
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APPENDIX. MESO–MACRO CONNECTIONS
Based on the fundamental relationships in the section entitled

‘Fundamental relationships’, this Appendix presents the calculation
of quantities at macro-scale (volume-averaged) from those at
meso-scale and vice versa. To this end, the behaviour inside and
outside the localisation band is considered as homogeneous, with the
constitutive stress–strain relationships written as

δσo ¼ Do : δεo ð14Þ

δσi ¼ Di : δεi ð15Þ
in which Do and Di are the tangent stiffness of the materials outside
and inside the localisation band, respectively.

CALCULATING MACRO BEHAVIOUR FROM
MESO RESPONSES

Given the stress and strain increments of the localisation
band (i.e. δεi and δσi), alongside its thickness and orientation, the
macro responses and other quantities of the specimen can
be calculated. Substituting equations (1) and (14) into the incre-
mental form traction continuity δti ¼ δto and solving for δu, one
obtains

δu ¼ h n � Do � nð Þ�1 Do : δεi � n� δσi � n� � ð16Þ

This equation is then substituted into equations (1) and (14)
to obtain the strain and stress of the surrounding bulk material

δεo ¼ δεi � n� n � Do � nð Þ�1 Do : δεi � n� δσi � n� �h is
ð17Þ

δσo ¼Do : δεo ¼ Do :

δεi � n� n � Do � nð Þ�1 Do : δεi � n� δσi � n� �h isn o ð18Þ

Finally, the macro stress and strain can be calculated from
equations (4) and (2) as

δσ ¼f δσi þ 1� fð ÞDo :

δεi � n� n � Do � nð Þ�1 Do : δεi � n� δσi � n� �h isn o ð19Þ

δε ¼ δεi � 1� fð Þ n� n � Do � nð Þ�1 Do : δεi � n� δσi � n� �h is
ð20Þ

OBTAINING MESO RESPONSES FROM
MACRO BEHAVIOUR

Given the macro stress and strain increments (i.e. δε and δσ), the
quantities inside and outside the localisation band can also be
calculated. Substituting equation (1) into equation (2), one obtains

δεo ¼ δε� f
h

n� δuð Þs ð21Þ

Substituting equations (14) and (21) into equation (4), one obtains

δσi ¼ 1
f

δσ� 1� fð ÞDo : δε� f
h

n� δuð Þs
� �	 


ð22Þ

Substituting this into the incremental form of traction continuity
in equation (3), δt ¼ δti, δu can be calculated as

δu ¼ h
f

n � Do � nð Þ�1 Do : δε� δσð Þ � n ð23Þ

From equations (21) and (23), the strain and stress increments of
the surrounding bulk material are calculated as

δεo ¼ δε� n� n � Do � nð Þ�1 Do : δε� δσð Þ � n
h is

ð24Þ

δσo ¼Do : δεo ¼ Do :

δε� n� n � Do � nð Þ�1 Do : δε� δσð Þ � n
h isn o ð25Þ

The stress and strain increments of the localisation band can then
be calculated from the bulk and the overall quantities as

δσi ¼ δσ� 1� fð Þδσo

f
ð26Þ

δεi ¼ δε� 1� fð Þδεo
f

ð27Þ
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NOTATION
A, f surface area and volume fraction

of localisation band
Do elastic tangent stiffness
h; θ thickness and orientation of

localisation band
I1 first invariant of stress tensor
J2 second invariant of deviatoric

stress tensor
K , G bulk and shear elastic modulus

n normal vector of localisation band
p, q hydrostatic and deviatoric

pressure
R transformation matrix from global

to local coordinate system
t overall traction of specimen in

global coordinate system
ti traction of localisation band in

global coordinate system
tilocal ¼ tn ts tt½ �T traction of localisation band in

local coordinate system
to traction of bulk material in global

coordinate system
u displacement jump of localisation

band in global coordinate system
ulocal ¼ un us ut½ �T displacement jump of localisation

band in local coordinate system
ε ¼ ε11 ε22 ε33 γ12 γ23 γ31½ �T volume-averaged strain of

specimen
εi ¼ εi11 ε

i
22 ε

i
33 ε

i
12 ε

i
23 ε

i
31

� �T
strain inside the localisation band

εo ¼ εo11 ε
o
22 ε

o
33 ε

o
12 ε

o
23 ε

o
31

� �T
strain of outer bulk material

εs, εv shear and volumetric strain
ν specific volume change

σ ¼ σ11 σ22 σ33 σ12 σ23 σ31½ �T volume-averaged stress in global
coordinate system

σi ¼ σi11 σ
i
22 σ

i
33 σ

i
12 σ

i
23 σ

i
31

� �T
stress inside localisation band

σlocal ¼ σn σs σt σns σst σnt½ �T volume-averaged stress in local
coordinate system

σo ¼ σo11 σ
o
22 σ

o
33 σ

o
12 σ

o
23 σ

o
31

� �T stress of bulk material
υ, n Poisson’s ratio and material

porosity
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