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1 Introduction
In this paper we introduce and experimentally validate the most

general theoretical framework governing the dynamic behavior and
scaling of Multiblock Tower Structures (MTS) as dictated by the
application of Buckingham’s Pi Theorem (BPT) [2]. BPT is a
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mathematically formal tool used in all branches of engineering
and science to identify dimensionless groups of problem variables
crucial in determining the response of a physical system when it
is subjected to excitations in a particular environment. The abil-
ity of identifying dimensionless groups is particularly important
for studying very complex systems where closed-form relations
describing their behaviors are not available. These groups allow
for the prediction of dominant trends between crucial parameters.
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Motivated by the need to evaluate the seismic response of large capacity
gravity energy storage systems (potential energy batteries) such as the proposed
frictional Multiblock Tower Structures (MTS) recently discussed by Andrade et
al. [1], we apply Buckingham’s Pi Theorem [2] to identify the most general
forms of dimensionless numbers and dynamic similitude laws appropriate for
scaling discontinuous multiblock structural systems involving general restoring
forces resisting inertial loading. We begin by introducing the dimensionless
“mu-number” (µN ) appropriate for both gravitational and frictional restoring
forces and then generalize by introducing the “arbitrary restoring force number”
(RN

F ). RN
F is subsequently employed to study similitude in various types of

discontinuous or discrete systems featuring frictional, gravitational, cohesive,
elastic and mixed restoring forces acting at the block interfaces. In the process,
we explore the additional consequences of inter and intra-block elasticity on
scaling. We also formulate a model describing the mechanism of structural signal
transmission for the case of rigid MTS featuring inter-block restoring forces
composed of elastic springs and interfacial friction, introducing the concept
of “structural speed”. Finally, we validate our results by demonstrating that
dynamic time-histories of field quantities and structural speeds between MTS
models at various scales are governed by our proposed similitude laws, thus
demonstrating the consistency of our approach.

Keywords: discontinuous system, discrete frictional structures, dynamic
similitude, scaling, seismic testing
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In addition, the identification of the dimensionless groups, or di-
mensionless numbers, enables the design of “scaled” or “model”
experiments, which can be used to indirectly, but accurately, study
“prototype” system behavior by just observing the behavior of a
model. This becomes possible, since knowledge of the appropriate
dimensionless groups dictates the form of “similitude” or scaling
laws and thus allows observations obtained at a small scale, in a
controlled and highly instrumented environment, to be extrapolated
to the often much larger engineering or geophysical scale without
loss of accuracy.

Historically, the above approach was extensively used in fluid
dynamics and in thermal sciences [3–5] where scaling enabled
the use of wind-tunnel and water-tunnel testing driving the de-
sign of generations of aircraft and submarine systems at a time
when large scale numerical computations were unavailable. A
prominent example of dimensionless numbers used in scaling of
fluid mechanics and gas dynamics systems is the Reynold’s num-
ber (RN

e B v`/ν) which represents the ratio of fluid inertia to the
viscus restoring forces and characterizes the complex transition be-
tween laminar and turbulent flow. Other examples are the Mach
number (MN B v/c), which is a measure of the compressibil-
ity characteristics of fluid flow past an object moving at a certain
speed, and the Froude number (FN

r B v/
√
`g), which represents

the ratio of inertial to gravitational restoring forces. In the above
examples, v represents a measure of fluid speed, c is the local
speed of sound, ν is the kinematic viscosity, ` is a characteris-
tic length while g, only involved in FN

r , is the acceleration of
gravity. In fluids, FN

r scaling is primarily used in analyzing hy-
draulic systems characterizing the nature of free-surface flows or
gravity wave formation in tsunamigenesis. It has also been used
to scale the wave making resistance of similar floating bodies of
various sizes. In contrast to fluid dynamics and thermal sciences,
the fields of solid mechanics and structures have only made limited
use of dimensionless numbers and scaling, with notable exceptions
such as the introduction of scaling laws governing ductility, in-
stabilities, and fractures (Bazant et al. [6,7]). Other prominent
exceptions to this rule can be found in structural dynamics and in
earthquake seismology, where the use of just a few key dimension-
less numbers has enabled the effective testing of the resistance of
buildings to earthquake excitation through scaled-down shake table
experiments (extensively discussed by Harris and Sabnis [8]). For
such testing, the most commonly used dimensionless number is the
Cauchy number (CN B v/

√
E/ρ = v/c), where v is a measure of

the particle velocity of a solid or structure, ρ is the mass density,
and E and c are representative moduli and elastic wave speeds of
the material. The CN number represents the ratio of the inertial
forces acting on various parts of the system to the elastic restoring
forces provided by the system’s elasticity. In very limited cases, the
Froude number (mostly in combination with CN scaling) has also
been used to scale model/prototype systems and to test structures
when gravitational restoring forces are also considered important
(see Moncrarz and Krawinkler [9]).

To understand the reasons for the widespread use of CN scal-
ing in evaluating the seismic reliability of the built environment
in modern times and to also explain the motivation of the current
study, we now refer to Fig. 1. This figure pictorially describes the
major types of large “monumental” structures that humanity has
constructed in the last forty-six or so centuries [10–13], most of
which have experienced and need to be protected from seismic ex-
citation of various types and intensities. Figures 1(a) and (b) depict
early monumental structures made of various quarried geomaterials
such as limestone, sandstone, granite, syenite, alabaster and basalt
as is the case with the Egyptian pyramids, or of limestone, sand-
stone or marble as is the case of ancient Greek or Roman temples.
With time, and up to the past century, more monumental struc-
tures were built out of various combinations of rocks and raw and
baked mud bricks as is the case in the damaged pagoda depicted in
Fig. 1(c). In all cases shown in Figs. 1(a)-(c), the structures were
characterized by the high density and rigidity of the constituent

materials. These structures belong to the class of “discontinuous”
or “discrete” gravitational structures in which a variety of nearly
rigid elements are held together by either frictional or cohesive
(mortar) restoring forces. These forces act at multiple interfaces
and, in addition to gravity, provide the restoring forces and mo-
ments during seismic excitation. It is the competition between
the seismically induced inertial forces with the various restoring
forces (gravitational, frictional, cohesive) described above as well
as the ability of the interfaces to dissipate energy, which ultimately
determines the ability of these discontinuous structures to resist
earthquake damage.

This competition, along with the associated kinematic response
of rocking, sliding, and its combinations have been studied in rela-
tion to either monolithic or segmented column systems by a num-
ber of authors (e.g., [14–24]), providing valuable insight regarding
their dynamic response. Most notably, the behavior of single multi-
spondyle marble columns have been shown to perform very well
under seismic excitation compared to the monolithic equivalent
as shown in a recent numerical study by Konstantinidis et al. [24]
and analytical studies by Kounadis et al. [22,23] and the references
therein. With this observation in mind, it is perhaps not surprising
that a large number of ancient gravitational/frictional structures all
around the Mediterranean, such as the Temple of Athena (Korres
[25]) and the Hephaistion Temple in Athens (Stiros [26]), depicted
here in Fig. 1(b), have sustained damage but have ultimately sur-
vived over 25 centuries of intense tectonic activity. Their survival
is due to the ability of their many interfaces to provide multiple
distributed sites of energy dissipation. Clear evidence of frictional
sliding of marble column drums sustained by the still intact Hep-
haistion temple is visible in the insert of Fig. 1(b) and discussed
by Stiros [26] and Galanopoulos [27]. Moving on to the mod-
ern era, the ability to manufacture lighter, flexible but also high-
strength materials at low-cost, combined with the need of cheaper
construction have allowed the use of reinforced concrete and steel
frame structures enabling construction of high-rise buildings of
great height and seismic resilience of the type shown in Fig. 1(d).
These new, continuous structures, unlike their discrete, frictional
or cohesive counterparts of the past, depend on their elastic flex-
ibility and ultimately on their strength to resist seismic loading
by initially providing elastic restoring forces. The continuity and
the elastic flexibility of these systems makes the Cauchy number
CN the appropriate dimensionless quantity governing their seis-
mic behavior. Indeed, continuous structures have dominated the
built environment since the beginning of the 20th century and will
likely continue constituting the norm until new needs and applica-
tions emerge.

One such very recent application arises from the urgent need
to provide large-capacity energy storage systems. Such systems
can be employed near a green energy source, such as solar and
wind, both of which suffer from intermittent energy generation.
These systems need to be simple, resilient, and easily deployable
all around the world. Figure 1(e) shows the concept of one such
system recently proposed by Energy Vault, Inc. [28]. In this
system, thousands of massive blocks of a soil/concrete/disposable
waste mix are lifted by cranes during periods of high energy avail-
ability (e.g., peak wind or sunlight), visible in the illustration, and
are stacked on top of each other to construct a high tower (up to
160 m) by using the excess of the generated green energy. This
results in the conversion of harvested energy into potential energy
stored in the MTS [1]. During periods of low energy harvesting or
peak user need, the same cranes are used to deconstruct the MTS
in a controlled manner, converting the stored potential energy into
kinetic energy used to generate electricity, thus making it available
to the grid at times of high demand. The conversion efficiency of
the energy storage/delivery cycle is just above 80%. These sim-
ple towers are discontinuous and purely frictionally held, therefore
very similar to the ancient discontinuous structures described in
Figs. 1(a)-(c). Very much like their ancient counterparts, these
new systems feature nearly rigid blocks and thousands of dissipa-
tive interfaces. When subjected to seismic excitation, the result-
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Source: wind
Source: solar

Storage: tower

(a) Discontinuous ~2500 BC (b) Discontinuous ~415 BC

(c) Masonry ~200 AD (e) Discontinuous ~2020 AD(d) Continuous ~2010 AD

Fig. 1 Pictorial description of the evolution of the major types of large structures throughout the centuries. Progression from
discontinuous, frictional/gravitational rigid multiblock systems to continuous, flexible structures and, recently, back to discontin-
uous, frictional/gravitational energy storage systems. From left to right, a) the Great Pyramid of Giza in Cairo, Egypt, b) the Temple
of Hephaistos in Athens, Greece, c) the Famen Pagoda, Shaanxi, China, d) the Burj Khalifa in Dubai, United Arab Emirates, and e)
the proposed gravitational energy storage system motivating this study.

ing inertial forces on each block are resisted by both gravitational
forces and moments as well as frictional restoring forces with lim-
ited elastic resistance offered either by the interfaces or by the
nearly rigid blocks. Interestingly, after almost forty-six centuries
of evolution in construction methods, this newly emerging energy
storage method (the gravitational battery) brings us back full-circle
to the re-emergence of fully discontinuous frictional systems. Suc-
cess highlights the need of properly understanding their seismic
performance, thus necessitating the identification of dimensionless
numbers that govern their dynamic behavior. Unlike the flexible
continuous systems of Fig. 1(c), the Cauchy number and scal-
ing based on the assumption of system continuity and elasticity is
totally inappropriate in describing the dynamics of such grossly
discontinuous and dissipative structures. Furthermore, as we will
show in this paper, Froude number (FN

r ) type of scaling, although
very appropriate for scaling purely gravitational block systems as
shown in [20], does not incorporate the correct physics of energy
dissipation when frictional sliding is present and is, thus, of only
limited applicability to frictional systems. To our knowledge, no

general analysis has previously been proposed to rigorously scale
the dynamics of discontinuous structures such as MTS. Indeed, this
new energy storage application has motivated our work. Our goal
is to identify the wider family of dimensionless numbers describing
the dynamics of all types of rigid or elastic discontinuous struc-
tures, ancient or new, involving various restoring forces, including
the important case of frictional restoring forces. In addition, the
present study provides the theoretical framework which informs
the consistency of the multiscale experimental design [29,30] and
modeling strategies [31] employed in a recent campaign aimed at
evaluating the seismic response of discrete, frictional MTS [1].
Here we define consistency as the ability to compare physical and
virtual models across scales and material properties.

1.1 Approximate statement of the BPT. Assume that
q1, q2, q3, . . . , qm are m dimensional variables describing the be-
havior of a physical problem, or system, through the equation
f (q1; . . . ; qm) = 0. Further, if n is the number of fundamen-
tal dimensions (e.g., charge [Q], mass [M], length [L], time [T])

3



[View A]

[M]odel ground motion

Scale geometry
and physics

(a) Models of discrete Multi-Block Tower Structures (MTS)

Building block

Spine

Tiling pattern

Base

[P]rototype ground motion

(b) System similitude

View A View B

[View B]
[View B]

[View A]

0.32

0.66

Fig. 2 An aluminum (Al) laboratory model (a) of a Multiblock Tower Structure (MTS) [1], or potential energy battery, used in
large-capacity energy storage. Both model and prototype systems are composed of 7,144 blocks. The prototype tower may reach
160 m in height. The towers comprise 38 stories (188 blocks each) and is constructed during periods of peak energy harvesting
by following a repeated tiling pattern of the type shown. The potential energy stored is recovered during periods of peak energy
demand by deconstructing the tower. (b) Exploring the seismic response of such a discontinuous structure by using geometrically
similar, scaled-down models in the laboratory necessitates the appropriate scaling of the ground velocity (or acceleration) time-
histories both in amplitude and time as shown in (b). The identification of dimensionless numbers describing the physics of this
dynamic problem informs the scaling and results in model/prototype similitude. The optical diagnostics are also scaled.

required to describe all of the m variables, then one can arbitrar-
ily choose n number of variables out of the original m variables
of the system and call them “primary” or “repeated” variables.
The “remaining” (m − n) variables can then be expressed as non-
dimensional combinations of the n “primary” variables. These
combinations are called the Π groups (Π1,Π2, . . . ,Πm−n) and are
(m−n) in number, each involving one of the “remaining” variables.
Furthermore, the original physical problem can be expressed as

F(Π1;Π2; . . . ;Πm−n) = 0,

and each of the Π groups can be expressed as a function of the rest,
i.e., Π1 = Π1(Π2;Π3; . . . ;Πm−n), Π2 = Π2(Π1;Π3; . . . ;Πm−n),
etc.

1.2 Applying BPT to various discrete systems. Consider a
discrete MTS system or structure of characteristic length (say total
height) `, composed of various contacting pieces, or blocks whose
height `0, as well as other dimensions scale with ` and have a
mass density ρ. The pieces are initially at rest in the presence of a
gravitational field of gravitational acceleration “g”. A laboratory
model of such a system is shown in Fig. 2(a).

We will examine the implications of BPT when such a discrete
structure is subjected to a specific inertial excitation in the pres-
ence of a gravitational field. During dynamic loading, and if the
acceleration is denoted by a, the resulting “inertial” force per unit
volume, or body force density ρa of each of the contacting pieces
is resisted by:

(1) a restoring “gravitational” force density fr = ρg at the in-
terface of rigid blocks (Case 1),

(2) a restoring, Coulomb-like, “frictional” force density fr =
µsρg at the interface of rigid blocks (Case 2),

(3) an “arbitrary” restoring force density fr at the interface of
rigid blocks (Case 3), or

(4) an arbitrary restoring force density fr at the interface of
“elastic” blocks (Case 4).

In Cases 1 and 2, the “restoring” force density per unit volume can
generally be expressed as µρg, where µ = 1 for Case 1 and µ = µs
(coefficient of friction) for Case 2.

We first consider Case 1 and 2 above by further assuming that the
system is purely rigid (infinite block and block-interface stiffness
or equivalently, infinite wave speeds). We then extend the analysis
to a third case (Case 3) in which the rigid blocks interact with
each other through arbitrary restoring forces fr , including cohe-
sive, frictional or gravitational interfacial restoring forces. Finally,
the most general case of discrete blocks will be considered (Case 4)
in which the discrete structure is also allowed to deform elastically
(through bulk elasticity or equivalent springs) while their interfa-
cial restoring forces will be kept arbitrary, eg., elastic, cohesive,
frictional, gravitational. The implication of each of these cases
will be discussed and new non-dimensional numbers RN

F
, µN and

SN will be introduced. We also examine the consequence of all
of these cases to similitude requirements between “prototype” and
“model” systems of the type shown in Fig. 2(a). We then vali-
date our approach by comparing time histories of kinematic fields
of similar model/prototype systems subjected to scaled earthquake
excitations as shown in Fig. 2(b).

2 Applying BPT to discrete systems of gravitationally
and frictionally held rigid blocks

Figure 2 depicts a particular geometry (a) of a discrete MTS
which is subjected to ground velocity histories vi(t) at its base (b).
Depending on the nature of the ground excitation at the tower base
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Inertial loading

(a) Rocking (b) Sliding (c) Rocking/sliding

gg g

Fig. 3 Basic kinematics of rocking, frictional sliding and fric-
tional rock/sliding of individual blocks within a multiblock
structure.

as well as the inter-block frictional characteristics, each block will
rock, slide and rock/slide (with or without friction) as schemati-
cally depicted in Fig. 3. In Case 1, the rigid blocks are allowed to
rock and contact with no frictional dissipation allowed. The accel-
eration field of the structure results in “inertial” force densities ρa.
These inertial forces and associated moment densities are resisted
by “gravitational” restoring force ρg and moment ρg` densities.

In this case, the most general dynamic problem involves the vari-
ables a, t, `, g, and ρ as dictated by Newton’s laws and kinematics,
but can also alternatively be described by the following equivalent
set of five variables:

v; a; `; g; ρ (m = 5), (1)

where v and a are particle velocities and accelerations, respectively,
t is time, ` is a characteristic length and ρ is the material mass
density.

In Case 2, rigid blocks are allowed to slide and rock/slide with
friction. The acceleration field of the structure results in “iner-
tial” force densities ρa. These “inertial” forces are resisted by
“frictional” restoring force densities ρ(µsg). This is very similar
to Case 1, the only difference being that the physics of sliding
also involve an additional interfacial property in the form of the
frictional coefficient µs , which is in general different than unity.

Here the most general problem would involve the following six
variables:

v; a; `; µs ; g; ρ (m = 6). (2)

However, since µs is dimensionless, it cannot be stated as one of
the dimensional variables needed to implement BPT.

In an attempt to introduce some knowledge from physics into
our consideration, we first contrast the two “restoring” force den-
sities (ρg) and (ρµsg) for Cases 1 and 2, respectively, and observe
that because of the nature of Coulomb-like frictional resistance,
which is proportional to normal load, both force densities are pro-
portional to (ρg). In Case 1, the coefficient of proportionality is
unity whereas in Case 2, it is equal to µs . This observation allows
us to couple the non-dimensional number µs with g as (µsg) and
thus to list the following dimensional variables for problems of the
type relevant to Case 2:

v; a; `; (µsg); ρ (m = 5). (3)

Contrasting the list of variables of Eqs. 1 and 3 allows us to
mathematically treat Cases 1 and 2 at the same time by considering

problems involving the following set of variables:

v; a; `; (µg); ρ,

where µ =
{

1 gravitational (Case 1),
µs frictional (Case 2).

(4)

For this combined case, the total number of variables is m = 5.
These dimensional variables require three (n = 3) fundamental
dimensions to describe them completely. These dimensions are
mass [M], length [L] and time [T].

Since the number of dimensions n = 3, we can now choose three
out of the above five variables to serve as the “primary” variables.
This leaves (m−n) = 2 as the “remaining” or “repeated” variables.
Also, there will be two non-dimensional Π groups (Π1 and Π2)
formed in this case.

All of the above variables are expressed in terms of the three
(n = 3) fundamental dimensions [M], [L], [T] as:

v = [LT−1]; a, g = [LT−2]; ` = [L]; ρ = [ML−3]. (5)

We now choose n = 3 “primary” or “repeating” variables. This is
quite arbitrary but it is advisable, before choosing them, to consider
the physics of the problem. Here we choose one relating to geome-
try, another to material and the third to the restoring “gravitational”
or “frictional” forces. The primary variables chosen are:

Geometry : `
Gravitation : (µg)
Material : ρ

}
(n = 3). (6)

The remaining variables are v and a and they are (m− n) = 2 in
number. For Case 1, µ = 1, while for Case 2, µ = µs as discussed
above.

Dimensionless groups Π1 and Π2

Each of these groups is formed by multiplying each of the re-
maining variables v and a by the product of powers of the “pri-
mary” variables `, (µg) and ρ as follows:

Π1 = `
a1 (µg)b1 ρc1 v and Π2 = `

a2 (µg)b2 ρc2 a. (7)

Expressing each of the above in terms of the fundamental di-
mensions of their constituent variables (see Eq. 5) and recalling
that each of the Πi’s are dimensionless (i.e., [Πi] = M0L0T0)
allows us to obtain a1, b1, c1 and a2, b2, c2:

Dimensionless group Π1 = `
a1 (µg)b1 ρc1 v

M0L0T0 = [L]a1 [LT−2]b1 [ML−3]c1 [LT−1],

M0 = [M]c1 ⇒ c1 = 0
L0 = [L]a1+b1−3c1+1 ⇒ a1 + b1 − 3c1 + 1 = 0
T0 = [T]−2b1−1 ⇒ −2b1 − 1 = 0

} a1 = −
1
2

b1 = −
1
2

c1 = 0.

Thus
Π1 = `

−1/2(µg)−1/2v =
v√
`(µg)

. (8)

Dimensionless group Π2 = `
a2 (µg)b2 ρc2 a

M0L0T0 = [L]a2 [LT−2]b2 [ML−3]c2 [LT−2],

M0 = [M]c2 ⇒ c2 = 0
L0 = [L]a2+b2−3c2+1 ⇒ a2 + b2 − 3c2 + 1 = 0
T0 = [T]−2b2−2 ⇒ −2b2 − 2 = 0

} a2 = 0
b2 = −1
c2 = 0.

Thus
Π2 = (µg)

−1a =
a
(µg)

. (9)
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From Eqs. 8 and 9 one can see that the dynamic problem is now
expressible as a function F of the non-dimensional numbers Π1
and Π2 as:

F(Π1;Π2) = F

(
v√
`µg

;
a
µg

)
= 0. (10)

It is important to note that the above equation is independent
of the mass density ρ for both the “gravitational” and “frictional”
cases, a fact that has major implications for scaling and similitude
of these structures. Mathematically this arises from the fact that
the BPT requires c1 = c2 = 0 in the above derivation.

2.1 Introducing the µN and other dimensionless groups.
The first dimensionless combination in Eq. 10 will from now on
be referred to as the “mu-Number”, µN , and will be defined as:

µN B Π1 B
v√
`µg
= FN

r /
√
µ. (11)

The µ-number is a generalization of the “Froude Number”, FN
r B

v/
√
`g, and has been introduced here to simultaneously account for

gravitational restoring forces (when µ = 1), and also for “frictional”
restoring forces (when µ = µs). Note that when µ = 1, the non-
dimensional group Π1 = v/

√
`µg reduces to v/

√
`g = FN

r while
a/µg reduces to a/g, thus the acceleration scales directly with g.
Also, given the non-dimensional nature of Eq. 10, one can express
v and a in terms of the two non-dimensional groups Π1(·) and
Π2(·):

v =
√
`µg Π1

(
a
µg

)
(12)

and

a = µg Π2

(
v√
`µg

)
= µg Π2(µ

N ), (13)

where Π1(·) and Π2(·) are unknown functions of the remaining Π
groups, i.e., Π1 = Π1(a/µg) and Π2 = Π2(µ

N ).
It should also be noted that here we have decided to represent

the dynamics of the rigid system in terms of v and a (see Eq. 4),
not time. This resulted in two dimensionless numbers Π1 and Π2,
involving v and a respectively, whose ratio can be used to obtain
a dimensionless number for time t. Alternatively, we could have
described the dynamic problem in terms of v and t and not a.
In that case, application of the BPT would have resulted in the
following dimensionless description of the dynamical problem:

F(Π1;Πt ) = F

(
v√
`µg

; t
√
µg

`

)
= 0, (14)

where Π1 = µ
N B v/

√
`µg and Πt B t

√
µg/`.

It should be observed that Eq. 14 is equivalent to Eq. 10
in describing the dynamical problem and that, as expected from
dimensional analysis, time is dimensionally given by:

t =
v

a
=

√
`

µg
Πt, (15)

where Πt = Π1/Π2.

2.2 µN scaling for discrete, rigid systems (Cases 1 and 2).
The results of the previous section, and in particular Eqs. 12
and 13 provide the basis of comparing a model system (M) to a
prototype system (P). In these expressions, Π1(·) and Π2(·) are
unknown functions of the remaining dimensionless groups. That
is, Π1 = Π1(Π2) and Π2 = Π2(Π1), while Eqs. 12 and 13 are the
basic relations which govern “µN similitude”. Indeed, for complete
similitude, or consistency, to be satisfied between a model and a
prototype, both Π1 B µN and Π2 need to be kept equal between
the two systems, i.e., ΠM

1 = Π
P
1 and ΠM

2 = Π
P
2 . For such systems,

applying Eqs. 12 and 13 to each of the problems and dividing by
sides, keeping in mind that Π1 and Π2 remain invariant, provides
“scaling laws” for the basic independent problem variables v and
a. Similarly, Eq. 15 can be used to scale the time variable t.

Velocity scaling

Applying Eq. 12 to both the model and prototype gives

vM =

√
`M µMgM ΠM

1 , vP =

√
`PµPgP ΠP

2 ,

where ΠM
1 = Π

P
1 and ΠM

2 = Π
P
2 , which is equivalent to

vM = vP
(
`M

`P

)1/2 (
µM

µP

)1/2 (
gM

gP

)1/2
. (16)

Acceleration scaling

Applying Eq. 13 to both model and prototype gives

aM = aP
(
µM

µP

) (
gM

gP

)
. (17)

Time scaling

Applying Eq. 15 to both model and prototype gives

tM = tP
(
`M

`P

)1/2 (
µP

µM

)1/2 (
gP

gM

)1/2
. (18)

The above scaling laws Eqs. 16-18 result from the enforcement
of µN similitude (i.e., keeping the µN = v/

√
`µg number as well

as Π2 = a/µg constant between model and prototype). It will
be referred to here as “µN scaling”. For MTS model/prototype
pairs of the type depicted in Fig. 2(b), Eqs. 16 and 18 furnish
the appropriate ground velocity and time scaling provided that the
constituent blocks are strictly rigid and that the inter-block restoring
forces are primarily gravitational/frictional as will be discussed in
a following section.

2.3 Consequences of µN scaling. The scaling relations Eqs.
16-18 exhibit some remarkable properties when applied to either
Case 1 (pure rocking) or Case 2 (frictional sliding and frictional
rock/sliding) or, under certain circumstances, for a mixture of the
two. These properties are summarized below:

A. When µN similitude is enforced, density, and thus mass,
is not involved in velocity, acceleration and time scaling.
This implies that no additional mass needs to be added to
the model system to achieve similitude. This holds for both
Cases 1 and 2 considered thus far.

B. For model/prototype systems with the same non-zero coef-
ficient of friction µMs = µPs (or µM = µP) for both Cases 1
and 2, µN scaling of Eqs. 16-18 reduces to:

vM = vP
(
`M

`P

)1/2 (
gM

gP

)1/2
,
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aM = aP
(
gM

gP

)
, (19)

tM = tP
(
`M

`P

)1/2 (
gP

gM

)1/2
,

and is identical for both Cases 1 and 2. If further, the
model and prototype are in the same gravitational environ-
ment (gP = gM ), then

vM = vP
√
λ`, aM = aP, tM = tP

√
λ`, (20)

where λ` = `M/`P . It is observed at this point that for
purely gravitational, frictionless systems (Case 1) experi-
encing only rocking of the blocks with no sliding (µ = 1),
µN scaling is equivalent to FN

r scaling since µN = FN
r .

Remarkably, this conclusion also holds even for frictional
systems where µN , FN

r provided that the model has the
same coefficient of friction as the prototype (µMs = µPs ).
The above observations naturally imply that µN scaling is
also applicable for “mixed systems” involving some parts
which experience rocking, some parts that experience pure
sliding and some parts which experience a mixture of slid-
ing and rocking, provided again that the friction coefficients
of the model and prototype are the same. This is a pow-
erful conclusion since most incoherently (frictionally) held
block systems indeed involve all of these physical mecha-
nisms (i.e., sliding; rocking; rock/sliding shown in Fig. 3)
when subjected to strong dynamic base excitations often in-
volving substantial ground-vertical components. Finally for
such systems, and despite the fact that µN does not reduce
to FN

r , the scaling relations of Eqs. 19-20 obtained on
the basis of µN and FN

r similitude become identical when
µMs = µ

P
s .

C. For mainly frictional model/prototype systems (involving
sliding and frictional rocking), which do not have the same
friction coefficient (µPs , µMs ), and for systems and exci-
tations where the structure mainly experiences sliding and
frictional dissipation (Case 2), Eqs. 16-18 are applicable
with µ = µs , and the µN number defined in Eq. 11 is
the only appropriate non-dimensional quantity. If further
gM = gP , then the µN scaling gives:

vM = vP

(
`M µMs

`PµPs

)1/2

= vP
√
λ`λµ,

aM = aP
(
µMs

µPs

)
= aPλµ, (21)

tM = tP
(
`M µPs

`PµMs

)1/2

= tP
√
λ`
λµ
,

where λ` = `M/`P and λµ = µMs /µ
P
s . This is called µN

scaling for the same gravity environment.
D. µN scaling is useful when the two systems

(model/prototype) have different friction coefficients.
Since it also involves λµ = µMs /µ

P
s , which appropriately

multiplies λ` in Eq. 21, it provides an additional lever
allowing the modeler to choose more realistic length scale
ratios in order to achieve similitude between a “small-scale”
experimental model structure and a “full-scale” prototype.
The experiments presented in Fig. 4 which involve geomet-
rically similar aluminum/concrete systems at two different
length scales represent such a case of two systems involving
very different coefficients of friction. Here, scaling is
provided by Eq. 21.

E. When different gravity environments are considered (e.g.,
Planetary vs. Earth gravity; artificial gravity in rotating
systems at the lab or space), µN scaling provides flexibility
in choosing model gravitational conditions as well as various
coefficients of friction and length scales.

2.4 Properties and physical interpretation of µN . The sec-
tions above introduce a new non-dimensional number µN and dis-
cuss its significance in scaling of both gravitational and frictional
rigid body systems. In particular, we have introduced the notion of
µN similitude and have first proposed that it can be used for scaling
rigid body model/prototype systems featuring different coefficients
of friction and gravitational environments, provided they involve
frictional sliding (sliding/rock-sliding) as their major dynamic de-
formation mechanism. Also, we have found that the invariance of
µN can also provide scaling for all model/prototype systems of
identical friction coefficient, even if such systems involve mixed
deformation mechanisms with some parts experiencing rocking,
some pure sliding and some a mixture of frictional sliding and
frictional rocking. Indeed, when in addition the model/prototype
pairs are subjected to the same gravitational environment, then the
resulting relations reduce to classical Froude scaling even if fric-
tion remains the dominant mechanism, provided, of course, that
µMs = µPs and gM = gP . To further clarify these results, we
observe that the µN number can be interpreted in terms of ratios
of “driving” and “restoring” force densities as follows:

µN B

(
v√
µ`g

)
=

(
ρv2

ρµ`g

)1/2

=

(
ρa
µρg

)1/2
=

(
fi
fr

)1/2
,

(22)

where fi = ρa is the driving inertial force density and fr = µρg
is the restoring (or resisting) force density.

When µ = 1, fr = ρg = fg becomes a purely gravitational
restoring force density. Furthermore, µN reduces to FN

r . How-
ever, when µ = µs , fr = µsρg = ff becomes the frictional restor-
ing force density. Motivated by the physical interpretation of the
dimensionless number µN as the ratio of inertial to resisting force
densities, we will subsequently explore the implications of applying
the BPT to rigid body systems involving arbitrary restoring force
densities fr acting at the interfaces between the rigid particles or
blocks.

3 Rigid body systems involving various types of
“restoring” force densities (Case 3)

Here, in addition to the kinematic variables v and a, length `,
and material mass density ρ, we choose to separately list the restor-
ing force density, fr , as a system variable. This is an alternative
choice of variables motivated by the interpretation of µN as a ra-
tio of inertial force to restoring force densities, which suggests the
possibility of generalization to arbitrary restoring forces. After the
appropriate Π groups are generally established in terms of fr , we
introduce an arbitrary “restoring force” dimensionless number RN

F
.

We then specialize the results for the interfacial force densities fr
being “gravitational”, “frictional”, and “cohesive”. These are only
a few examples of the many types of restoring forces possible in
such systems. The blocks are assumed to be rigid in all cases and
elastic properties are not explicitly stated in the list of variables.
Here the general list of variables is:

v; a; `; ρ; fr (m = 5). (23)

Each of the above variables involve the following groups of funda-
mental dimensions:

v = [LT−1]; a = [LT−2]; ` = [L];
ρ = [ML−3]; fr = [ML−2T−2].
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We now choose the following primary variables which is a gen-
eralization of our earlier choice of these variables as they appear
in Eq. 6:

Geometry : `
Restoring force density : fr
Material : ρ

}
(n = 3). (24)

The remaining two variables are v and a, and as a result we have
(m − n) = 2 dimensionless Π groups as follows:

Π1 = `
a1 ρb1 f c1

r v; Π2 = `
a2 ρb2 f c2

r a.

Solving for the coefficients above results in the dimensionless
groups Π1 = v/

√
ρ/ fr` and Π2 = ρa/ fr . The system is now

expressible as:

f (Π1;Π2) = f
(
v

√
ρ

fr`
;
ρa
fr

)
= 0. (25)

It should be noted that for arbitrary restoring forces densities, the
mass density ρ reappears in the dimensionless numbers. We later
see that ρ only disappears for specific forms of fr .

3.1 Introducing the “Arbitrary Restoring Force” dimen-
sionless number RN

F
. Motivated by the form of Eq. 25 above,

we identify the Π1 dimensionless group as an important quantity
governing similitude in Case 3 discussed above. We consequently
define a general dimensionless number RN

F
as

RN
F B Π1 B v

√
ρ

fr`
(26)

and call it the “Arbitrary Restoring Force Number”, RN
F
. It should

be noted that RN
F

can be expressed as:

RN
F =

v√
fr`/ρ

=

(
ρv2

fr`

)1/2

=

(
ρa
fr

)1/2
=

(
fi
fr

)1/2
,

(27)

and can thus be directly interpreted in terms of ratios of “inertial”
ρa and arbitrary “restoring” force densities fr of various types.
RN
F

is a general dimensionless number which naturally arises as a
consequence of the application of the BPT methodology. Indeed,
comparison of Eq. 27 with Eq. 22 suggests that RN

F
is a gener-

alization of the µN and FN
r numbers discussed above for systems

involving frictional or gravitational restoring forces, respectively.
As we will see in Sec. 4 where intra-block elasticity is included,
RN
F

reduces to the Cauchy number CN , provided that the restoring
forces are elastic.

We now consider various types of “restoring” force densities fr
and explore the resulting forms of RN

F
and the specialized types of

similitude for each case.

3.1.1 Gravitational restoring force densities. Then fr = fg =
ρg and Eqs. 25 and 26 give:

RN
F
B Π1 B v

√
ρ

(ρg)`
=

v√
`g
= FN

r ;

Π2 =
ρa
ρg
=

a
g
.

Also note that here RN
F
= FN

r and Eq. 25 reduces to

f (Π1;Π2) = f

(
v√
`g

;
a
g

)
= f

(
FN
r ;

a
g

)
= 0. (28)

3.1.2 Frictional restoring force densities. Then fr = ff =
ρµsg and Eqs. 25 and 26 give:

RN
F
B Π1 B

v√
µs`g

=
FN
r
√
µs
= µN ;

Π2 =
a
µsg

.

In this case, RN
F
= µN and the system becomes

f (Π1;Π2) = f

(
v√
µs`g

;
a
µsg

)
= 0, (29)

as in Eq. 10 for µ = µs .

3.1.3 Both gravitational and frictional restoring force densi-
ties. If fr = ρµg, again RN

F
= µN with µ = 1 for the gravitational

case and µ = µs for the frictional case, then

RN
F B Π1 =

v√
µ`g

, Π2 =
a
µg
,

while

f (Π1;Π2) = f

(
v√
µ`g

;
a
µg

)
= f

(
µN ;

a
µg

)
= 0. (30)

Eq. 30 covers both Cases 1 and 2 and is identical to Eq. 10
obtained by a less general methodology, which is recovered here
as a special case.

3.1.4 Cohesive force density. In a system of characteristic
length `, area A = `2, and volume V = `3 and if the inter-block
restoring forces F arise from a constant critical cohesive stress
σ = τ0 (cohesive strength), then the restoring force density will be
dimensionally given by fr = F/V = (σ`2)/`3 = τ0/`. In such a
system τ0 is assumed to be independent of weight or normal stress
and in practice may be due to the “constant strength” of interfacial
mortar in masonry or to a constant “yield strength” when the inter-
block resistance is provided by highly ductile (rigid-plastic) metal
joints. In this case, Eqs. 25 and 27 give:

RN
F
B Π1 = v

√
ρ

(τ0/`)`
= v

√
ρ

τ0
;

Π2 =
`ρa
τ0

.

Here RN
F

reduces to v
√
ρ/τ0. This number is the dimension-

less combination governing kinematic and time similitude when
the restoring forces are cohesive and will be called the “Cohesive
Strength Number”, SN . Also, Eq. 25 becomes

g(Π1;Π2) = g

(
v

√
ρ

τ0
;
`ρa
τ0

)
= g

(
SN ;

`ρa
τ0

)
= 0.

(31)

The last dimensionless group in Eq. 31 represents the scaling of
inter-block strength for this gravity load structure, i.e., τ0 = `ρgΠ3.
Finally, the new dimensionless “Cohesive Strength Number” SN

governing similitude is defined as

SN B v

√
ρ

τ0
. (32)
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3.2 Observations.

A. In Cases 1 and 2 where fr = µρg with µ = 1 or µ = µs , re-
spectively, RN

F
= µN and the system performance becomes

independent of the mass density while the dynamics of the
system scale with µN and a/µg.

B. When the restoring force density is provided by a con-
stant cohesive strength, then RN

F
reduces to the “Cohesive

Strength Number” SN B v
√
ρ/τo. The mass density re-

enters the system and plays a role in similitude through the
ratio τ0/ρ.

C. Points A and B above explain the difference in satisfying
similitude between traditional “masonry” model/prototype
structures involving cohesion (mortar) between building
blocks, and achieving the same for “frictionally held” struc-
tures or “soil structures” where gravity and Coulomb-like
interfacial strength laws are of relevance.

4 General discrete systems (including intra-block or
inter-block elasticity) involving various types of
“restoring” force densities (Case 4)

Here we adopt the methodology of Sec. 3 where our system
variables include an arbitrary restoring force density fr (force/unit
volume) acting between the discrete blocks, but we also explicitly
add individual block elasticity (intra-block elasticity) by explicitly
including elastic modulus E or an equivalent spring stiffness to the
list of variables. In this case the list of variables becomes:

v; a; `; ρ; fr ; E (m = 6). (33)

Each of the above variables involves the following groups of the
(n = 3) fundamental dimensions [M], [L] and [T] as: v = [LT−1];
a = [LT−2]; ` = [L]; ρ = [ML−2]; fr = [ML−2T−2]; and E =
[ML−1T−2].

We choose the following primary variables:

Geometry : `
Restoring force density : fr
Material : ρ

}
(n = 3).

The remaining (m − n) = 3 variables are v; a; E . In this case we
have three dimensionless Π groups:

Π1 = `
a1 ρb1 f c1

r v; Π2 = `
a2 ρb2 f c2

r a; Π3 = `
a4 ρb4 f c4

r E .

The expressions for Π1 and Π2 above are exactly the same as in
the case discussed in Sec. 3 (Eq. 25), given by:

Π1 = v

(
ρ

fr`

)1/2
; Π2 =

ρa
fr
. (34)

However, the difference here to the case of Sec. 3 will become
apparent when Π3 is calculated. To obtain Π3, we express it in
terms of fundamental variables [M], [L] and [T]:

M0L0T0 = [L]a4 [ML−3]b4 [ML−2T−2]c4 [ML−1T−2],

which gives a4 = 1, b4 = 0, and c4 = 1, thus

Π3 =
E
` fr

. (35)

As a result of the above, the system is described as a function
f (· ; · ; ·) of the three dimensionless groups as:

f (Π1;Π2;Π3) = f
(
v

√
ρ

fr`
;
ρa
fr

;
E
` fr

)
= 0. (36)

Equation 36 is the most general expression describing a discrete
system and featuring an arbitrary restoring force density fr . The
group Π1 can again be identified as the arbitrary restoring force
dimensionless number RN

F
defined in Sec. 3.1 (Eq. 26).

The presence of the third dimensionless number, Π3 = E/` fr ,
is a direct consequence of including the variable E in the list of
problem variables (Eq. 33), even if the interfacial restoring force is
inelastic. By introducing a one dimensional wave speed c =

√
E/ρ,

this number reduces to Π3 = ρc2/` fr and reflects the existence of
elastic waves in the system. If one compares Eq. 36 with Eq. 25 of
Sec. 3, which was derived for a strictly rigid system in the absence
of elasticity, it is found that they share the first two dimensionless
groups with the third one missing in Eq. 25. This is not surprising
since the analysis leading to Eq. 36 is a generalization of the rigid
block case. As a result, the third dimensionless group provides
an additional constraint which will have to be satisfied in order
to fully satisfy similitude between model/prototype systems in the
presence of elasticity, even in cases when the restoring forces fr
between the blocks are kept arbitrary.

It should further be noted that in discrete element models such
as LS-DEM [32] where the system elasticity is represented by an
equivalent elastic spring stiffness, K , even in the presence of arbi-
trary restoring force fr at the block interfaces, the list of variables
equivalent to those in Eq. 33 will be: v; a; `; ρ; fr ; K . In such sys-
tems application of the BPT methodology yields a dimensionless
dynamical system representation of the form

f
(
v

√
ρ

fr`
;
ρa
fr

;
K
`2 fr

)
= 0, (37)

Not surprisingly, the first two dimensionless groups in Eq. 37 is
identical to those of Eq. 36. Furthermore, the third dimensionless
group Π3 = K/`2 fr in Eq. 37 reduces to Π3 = E/` fr = ρc2/` fr ,
as it appears in Eq. 36, if one observes that K and E are re-
lated by E = K/` through dimensional analysis, demonstrating the
complete equivalence of representing elasticity either in terms of
a modulus E or a spring stiffness K .

In the following sections, we specialize the general system de-
scribed in Eq. 36 or 37 to various types of restoring force densities
acting between the blocks of the discrete system and then explore
their individual characteristics.

4.1 Purely elastic restoring force. If the system is purely
elastic, the restoring force per unit volume is also elastic and is
given by fr = (σA)/V = σ/` = (Eε)/` and, since the strain ε is
non-dimensional, fr = E/` and the Π groups in Eq. 36 become:

RN
F
B Π1 = v

√
ρ

E
=
v

c
,

Π2 = `ρa/E = `a/c2, Π3 = 1,

where c =
√

E/ρ is the system’s bar wave speed. The system is
now described as:

f̃
(
v

c
;
`a
c2

)
= 0, (38)

where CN B v/c is the “Cauchy Number”. In this case, RN
F
= CN

and the system obeys the classical Cauchy number similitude law
which is known to govern similitude in purely elastic systems [8,9].
For models where elasticity is represented by a spring stiffness K ,
such as LS-DEM [32], and for the special case when the inter-
block restoring forces F are also purely elastic, F = K/` and the
restoring force per unit volume becomes fr B F/`3 = K/`2. In
this case, the system is described by:

g

(
v

√
ρ`

K
;
ρa`2

K

)
= 0. (39)
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Comparing Eq. 39 to Eq. 38 and recalling that dimensionally
K = E` and c2 = E/ρ, one observes that they become identical.
This demonstrates the equivalence of representing system elasticity
either by bulk elastic properties such as E , or by spring stiffness
such as K . Furthermore, Cauchy similitude holds for both cases.

4.2 Constant cohesive strength force density. If the restor-
ing force density is cohesive (i.e., fr = τ0/`), where τ0 is a constant
cohesive strength independent of weight, then RN

F
reduces to the

strength number SN B v
√
ρ/τ0 and the dimensionless Π groups

in Eq. 36 become:

RN
F
B Π1 = v

√
ρ

τ0
= SN ,

Π2 =
`ρa
τ0

, Π3 =
E
τ0
,

while the system is described by

ĝ

(
v

√
ρ

τ0
;
`ρa
τ0

;
E
τ0

)
= 0. (40)

4.3 Gravitational/frictional system with intra-block or in-
ter-block spring elasticity. If the system is gravitational and/or
frictional (i.e., fr = ρµg), then RN

F
= µN and the dimensionless

Π groups of Eq. 36 or 37 become:

RN
F
B Π1 =

v√
`µg
= µN ;

Π2 =
a
µg

; Π3 =
c2

`µg

(
or Π3 =

K
`2µρg

)
.

The system is now described by

g̃

(
v√
`µg

;
a
µg

;
c2

`µg

)
= 0, (41)

or

g̃

(
v√
`µg

;
a
µg

;
K

`2µρg

)
= 0 (42)

for gravitational/frictional systems described by LS-DEM types of
models, where elasticity is represented in terms of spring stiffness
K .

4.4 Discussion and summary of results. Equations 36-42
provide the various forms of system behavior and dimensionless
groups that arise from the most general case of a discrete system
of elastic blocks featuring various types of elastic or dissipative
(inelastic) restoring force densities at their interfaces.

A common characteristic in all of the cases discussed above
is the appearance of the dimensionless number Π3 = E/` fr =
ρc2/` fr in Eq. 36 and in all its special cases with the exception of
the elastic case where Π3 becomes trivial (Π3 = 1). This number
appears because of the addition of the elastic modulus E in the
list of problem variables (Eq. 33) even when the restoring forces
are purely inelastic. It reflects the existence of elastic waves in
the system and as such it is absent in Cases 1-3 (Sec. 1-3) where
the more idealized problem of perfectly rigid blocks is initially
considered.

Each of the choices for fr presented here show that kinematic
quantities, such as velocities and accelerations, appear in various
dimensionless groups which reveal the many different types of
scaling laws that need to be observed in order to ensure simili-
tude between model and prototype systems in each of these cases.

In particular, we have defined here a variety of dimensionless
groups: RN

F
B v

√
ρ/ fr` (Arbitrary Restoring Force Number),

µN B v/
√
`µg (µ-Number), FN

r B v/
√
`g (Froude Number),

CN B v/
√
ρ/E = v/c (Cauchy Number) and SN B v/

√
ρ/τ0

(Cohesive Strength Number) which are appropriate to each of
the general, gravitational/frictional, elastic and cohesive strength
restoring force cases, respectively. Unlike the perfectly rigid block
case, the elastic constants and density (or wave speeds) also need
to scale through the presence of the third dimensionless group Π3,
which provides the necessary material property scaling between a
model/prototype system.

For models such as LS-DEM [31] where the system elasticity is
represented by a spring stiffness K instead of an elastic modulus E ,
even if the restoring force fr remains arbitrary, this group reduces
to Π3 = K/`2 fr and provides the necessary stiffness scaling for
the spring constants involved in these models.

In what follows, we will refer to the combination on the scaling
requirements provided by the dimensionless group Π3 = ρc2/` fr
(or K/`2 fr ) in addition to the dimensionless numbers discussed
above as complete RN

F
, µN , FN

r , CN , or SN similitudes, respec-
tively. For each of these cases there are specific scaling relations
that need to be satisfied in order to ensure complete similitude
between a model and a prototype. These will be detailed in Sec.
5.

5 General forms of scaling relations for discrete
systems obeying similitude

The dimensional analysis for the general case of discrete sys-
tems of elastic blocks including various types of restoring force
densities fr has resulted in a dimensionless problem description
of the form described in Sec. 4, Eqs. 36 and 37. The dimension-
less groups Π1 to Π3 involved in these equations provide the basis
of comparing the behavior of a model system (M) to a prototype
system (P), provided that these two systems are chosen in such
a way as to obey similitude. Indeed, obeying similitude means
that all of the dimensionless quantities involving the independent
system variables must remain invariant between model and pro-
totype. Such systems are called “similar” and their variables are
connected by specific scaling relations which we will describe in
this section. Time t and other dependent variables can also easily
be added to the list since they can be calculated via simple dimen-
sional analysis from the known dimensionless groups involving our
chosen independent variables. In particular, here we also choose
to provide the dimensionless groups and scaling relations for the
angular velocity θ̇ and the angular acceleration Üθ, since these are
important experimentally measured quantities in discrete systems,
especially those involving rocking. These additional variables can
be expressed as

t =

√
ρ`

fr
Πt, θ̇ =

√
fr
`ρ
Πθ̇,

Üθ =
`ρ

fr
Π Üθ,

where Πt = Π1/Π2, Πθ̇ = Π
−1
t and Π Üθ = Π

−2
t .

Indeed, by expressing each of the problem variables in terms of
the dimensionless groups for both model and prototype, recalling
that all dimensionless groups must remain invariant for similitude
to be satisfied (ΠM

i = ΠP
i ) and dividing by sides, one obtains

scaling relations for each of the kinematic variables, time, and
wave speeds. These are described in detail in the sections that
follow for various types of restoring forces densities.

5.1 General scaling relations (RN
F
B v

√

ρ/ fr ` similitude).
When the restoring force density fr is left arbitrary or unspecified,
and if in addition we include the effect of different gravitational
environments between the model and the prototype (gM , gP),
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the scaling relations become:

vM = vP
(
`M

`P

)1/2 (
f Mr
f Pr

)1/2 (
ρP

ρM

)1/2
,

aM = aP
(
f Mr
f Pr

) (
ρP

ρM

)
,

tM = tP
(
`M

`P

)1/2 (
f Pr
f Mr

)1/2 (
ρM

ρP

)1/2
,

θ̇M = θ̇P
(
`P

`M

)1/2 (
f Mr
f Pr

)1/2 (
ρP

ρM

)1/2
,

ÜθM = ÜθP
(
`P

`M

) (
f Mr
f Pr

) (
ρP

ρM

)
,

cM = cP
(
`M

`P

)1/2 (
f Mr
f Pr

)1/2 (
ρP

ρM

)1/2
or

KM = KP
(
`M

`P

)2 (
f Mr
f Pr

)
.

(43)

5.2 Specialization of scaling laws to various types of restor-
ing force densities. Here we consider some simple examples de-
scribing the restoring force densities fr , and present the scaling
relations appropriate for each case:

Gravitational/frictional restoring force densities (µN B v/
√
`µg

similitude)

In these cases fr = ρµg, where µ = 1 for gravitational and µ =
µs for frictional systems, while the restoring force dimensionless
number RN

F
now reduces to µN . By substituting in Eq. 43 above,

one gets the following specialization of the scaling relations:

vM = vP
(
`M

`P

)1/2 (
µM

µP

)1/2 (
gM

gP

)1/2
,

aM = aP
(
µN

µP

) (
gM

gP

)
,

tM = tP
(
`M

`P

)1/2 (
µP

µM

)1/2 (
gP

gM

)1/2
,

θ̇M = θ̇P
(
`P

`M

)1/2 (
µM

µP

)1/2 (
gM

gP

)1/2
,

ÜθM = ÜθP
(
`P

`M

) (
µM

µP

) (
gM

gP

)1/2
,

cM = cP
(
`M

`P

)1/2 (
µM

µP

)1/2 (
gM

gP

)1/2
or

KM = KP
(
`M

`P

)2 (
µM

µP

)1/2 (
ρM

ρP

)1/2 (
gM

gP

)1/2
.

(44)

The first five of the above equations are consistent with µN (µ-
number) scaling, as discussed in Sec. 2.2, and are independent of
density ρ. They only depend on length and on the product µg. The
sixth equation however, represents the effect of elasticity and unlike
the rigid case, provides additional constraints on the ratios of wave
speeds or stiffnesses for complete similitude to be satisfied when
system elasticity is present. either through the elastic modulus E
or through the spring stiffness K of the structure as discussed in
Sec. 4.4, and also introduces a dependence on density ρ.

Elastic restoring force density (CN B v/c similitude)

In this case fr = σ/` = Eε/`, where E is a modulus, σ is
a characteristic stress (normal or shear) and ε is a dimensionless

strain measure. Thus, in a dimensional setting, fr = E/` is used
to substitute in Eq. 43 above to give:

vM = vP
(
EM

EP

)1/2 (
ρP

ρM

)1/2
= vP

(
cM

cP

)
,

aM = aP
(
EM

EP

) (
ρP

ρM

) (
`P

`M

)
= aP

(
cM

cP

)2 (
`P

`M

)
,

tM = tP
(
`M

`P

) (
EP

EM

)1/2 (
ρM

ρP

)1/2
= tP

(
`M

`P

) (
cP

cM

)
,

θ̇M = θ̇P
(
`P

`M

) (
EM

EP

)1/2 (
ρP

ρM

)1/2
= θ̇P

(
`P

`M

) (
cM

cP

)
,

ÜθM = ÜθP
(
`P

`M

)2 (
EM

EP

) (
ρP

ρM

)
= ÜθP

(
`P

`M

)2 (
cM

cP

)2
.

(45)
Here the one dimensional (bar) wave speed c appears in the equa-
tions and is given by c =

√
E/ρ. In this case the arbitrary restoring

force dimensionless number RN
F

reduces to the Cauchy number,
CN . In this case the sixth expression in Eq. 43 is trivially satis-
fied.

Constant cohesive strength restoring force density (SN B v/
√
ρ/τ0

similitude)

In this case fr = τ0/`, where τ0 is a constant cohesive (normal
or shear) strength independent of weight, in contrast to the fric-
tional case, and of modulus, in contrast to the elastic case. Here,
substitution into Eq. 43 gives:

vM = vP
(
τM

0
τP

0

)1/2 (
ρP

ρM

)1/2
,

aM = aP
(
`P

`M

) (
τM

0
τP

0

) (
ρP

ρM

)
,

tM = tP
(
`M

`P

) (
τP

0
τM

0

)1/2 (
ρM

ρP

)1/2
,

θ̇M = θ̇P
(
`P

`M

) (
τM

0
τP

0

)1/2 (
ρP

ρM

)1/2
,

ÜθM = ÜθP
(
`P

`M

)2
(
τM

0
τP

0

) (
ρP

ρM

)
,

cM = cP
(
τM

0
τP

0

)1/2 (
ρP

ρM

)1/2
or

KM = KP
(
`M

`P

) (
τM

0
τP

0

)
.

(46)

The first five of the above equations depend on the ratio τ0/ρ in
addition to the characteristic length `. The dimensionless number
RN
F

reduces to the cohesive strength number SN = v
√
ρ/τ0.

5.3 General observations and restrictions on “scaled” ex-
perimental design. The sixth equation in each of the groups of
Eqs. 43, 44, and 46 represents a scaling requirement imposed by
the dimensionless number Π3 = E/` fr = ρc2/` fr of Eq. 36 and,
as discussed in Sec. 4.4, is a consequence of the inter or intra-
block elasticity. This requirement is trivially satisfied in the elastic
case (Eq. 45) so the sixth equation does not appear in this case.

It should again be emphasized that for “similar” rigid block
systems, this requirement relating cM to cP is not necessary in
order to guarantee similitude. In reality, many systems of interest
to the field of civil engineering may involve discrete structures
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made out of concrete or geomaterials which can be considered
rigid for most practical purposes. However, there may be other
cases when this assumption is violated. Thus, it is important to
investigate the constraints to the choices of model material wave
speed cM that such a restriction imposes so that a scaled-down lab
experiment can be designed in such a way as to achieve “strict”
similitude.

For frictional systems, Eqs. 44 apply and provide guidance on
how to obtain the ground shaking velocity (or acceleration) time
records that need to be applied to a model. Indeed, the first three
of these equations show that the velocity or acceleration excitations
to be applied to a model of length `M and friction coefficient µMs
should be related to those of a prototype of length `P and by µPs
by:

vM = vP
√
λ`λµ, aM = aPλµ, (47)

where λ` = `M/`P and λµ = µMs /µPs , while the time axis of the
desired model excitation will have to be scaled to satisfy

tM = tP
√
λµ/λ` . (48)

Here we have assumed that both model and prototype are located
within the same gravitational environment (gM = gP). This scal-
ing is enough for purely rigid systems. Furthermore, and as we
discussed in Sec. 2.3, scaling for such rigid systems remain inde-
pendent of mass density and as a result, the density of the chosen
model system is not a factor in ensuring similitude. However,
when system elasticity becomes important and if gM = gP , the
additional restriction imposed on wave speed similitude (last of Eq.
44) requires that the blocks of the model structure are made of a
material whose one-dimensional wave speed cM is related to the
wave speed cP of the blocks of the prototype structure by:

cM = cP
√
λµλ` . (49)

While Eqs. 47 and 48 are indeed easy to implement in the lab,
Eq. 49 may be difficult to satisfy with common lab materials. As
an example, we consider λ` = 0.23 and λµ = 0.3, the length and
friction coefficient ratios between the experiments described in the
next section, respectively. In this example, the prototype material
(high-quality concrete) has a 1-D (bar) wave speed of cP = 4, 600
m/s and Eq. 49 predicts a bar wave speed cM of the model material
of cM = 1, 200 m/s, which is close to the wave speed of “pressed
wood” or some soft polymers.

Finally, regarding the choice of frictional parameters in design-
ing model experiments, it should be noted that choosing the friction
coefficient of the model to coincide with that of the prototype is
not necessary since µN scaling also ensures similitude in cases
when these coefficients differ. Indeed, the existence of the ratio
λµ in Eqs. 47-49 provides a welcomed flexibility for scaling the
excitations of the model to satisfy the desired frequency response
and maximum amplitude specifications of laboratory scale shake
tables, which often have a variety of performance restrictions.

6 Experimental and numerical validation of µN

similitude
Our goal here is to explore the issue of consistency across

scales. Consistency requires the point-wise similarity between the
dynamic motion histories of geometrically similar models and pro-
totypes, provided that the input base excitations are also similar.
We will address this issue by using both experimental and numer-
ical comparisons of similar systems involving various block mate-
rial combinations and friction coefficients, at two different length
scales.

Figure 4 displays experiments performed on two multiblock
towers, one of which we will call the model (M) of total height
`M = 1.51 m and made of aluminum (Al) blocks and the other,

which we will call the prototype (P) of height `P = 6.46 m made of
concrete blocks. The corresponding block heights were `M0 = 3.97
cm and `P0 = 17 cm, respectively, giving a ratio of length scales
λ` = `

M/`P = `M0 /`
P
0 = 0.23. The coefficient of friction for the

Al blocks was µMs = 0.18 while that of concrete was µPs = 0.6
(λµ = µ

M
s /µ

P
s = 0.3).

The Al tower was tested at the Graduate Aerospace Laborato-
ries at Caltech (GALCIT), while the concrete one at the Pacific
Earthquake Engineering Research Center (PEER) at UC Berkeley.
Both towers are exact replicas of the 7,144 block, real world MTS
[1] which has a total height of approximately twenty five times
that of the concrete tower and one hundred seven times that of
the Al tower. The details of tower construction, geometry, choice
of base excitation and measurement diagnostics are discussed in
companion publications [29,30]. These papers report on a number
of experiments involving MTS of various heights made of wood,
Al and concrete, subjected to a variety of strong, near-fault ground
motions corresponding to historical earthquakes of various magni-
tudes.

In the present work we will focus on only one Al/concrete tower-
pair specifically designed to examine the validity of µN similitude.
Since the small-capacity shake table used to excite the Al tower at
Caltech is only capable of horizontal 1-D excitations, this particular
concrete tower (tested at the six degree-of-freedom shaking table
at UCB) was also subjected to a 1-D motion history. The velocity
histories imposed at the base of the model and prototype towers
are shown at the bottom of Figs. 4(c) and (d), respectively, and
are marked as “base excitations”. The two excitation records are
related by scaling velocity and time according to Eqs. 47 and
48 which govern the scaling of frictional model/prototype system
pairs involving different coefficients of friction in the presence of
identical gravitational environments (gM = gP). Our goal here is
to compare experiments conducted on nearly rigid model/prototype
systems, intentionally chosen to have very different coefficients of
friction, material properties and masses for the purpose of assessing
the limits of the robustness of µN similitude. The mass of each
MTS is shown on the top of Fig. 4.

The color maps in Figs. 4(a) and (b) are representative snap-
shots of the magnitude of the horizontal component of the particle
velocities parallel to the direction of shaking for the two systems
respectively. These full-field images are obtained through high-
speed optical imaging of the tower surface and are enabled by
Digital Image Correlation (DIC) [33]. As schematically suggested
by Fig. 2(b), the temporal sensitivity of optical diagnostics is
scaled according to µN similitude, while the spatial arrangement
is scaled according to system geometry [29,30].

In addition to providing full-field imaging of the overall dynamic
deformation behavior of the towers, the optical measurements have
enough resolution to provide the time histories of motion of indi-
vidual blocks within each of the 38 layers (stories) of the towers.
These velocity time histories are reported in Figs. 4(c) and (d)
for 19 out of the 38 blocks located at the black circles along the
height (spine) of each of the towers. We call these time histories
the “spine records”.

These spine records show the evolution of motion signals prop-
agating up the towers, following the application of similar (µN -
scaled) excitations at the tower bases. It should be noted that these
signals are reported in reference to an “inertial” or “Galilean” frame
fixed at a remote location within each laboratory. Most interest-
ingly, these spine records clearly reveal the time scales associated
with the propagation of deformation of signals traveling up the
two towers. Specifically, they reveal well defined moments when
each layer first senses information arriving from its bottom and is
subsequently transmitted to the layer above, block by block. By
connecting the points of each of the time histories corresponding to
the first measurable deviation the horizontal velocity history from
zero (initial time of signal arrival), one can trace a time/distance
line (see Figs. 4(c) and (d)), defining a characteristic speed of
transmission in each system. We will call this speed the “struc-
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Fig. 4 High-speed optical measurements of the horizontal velocity component v1 (color plots), enabled by Digital Image Corre-
lation (DIC) for (a) an aluminum (Al) and (b) concrete model/prototype tower pair. (c) and (d) show velocity time histories of the
imposed, scaled base excitations (red) and the resulting velocities (black) of individual blocks situated at 19 points (circles) up
the heights of the 38 story towers. These histories are called the “spine records”.

tural speed” of the discontinuous system. Another way to measure
these structural speeds is through the snapshots of the color maps
shown in Figs. 4(a) and (b). These two measurements (from spines
or maps) are in excellent agreement and are indeed two sides of
the same coin. In each of the two systems shown, the structural
speeds are nearly constant (the time/distance line is almost but not

perfectly straight). In practice, these speeds were calculated by
following a common measurable feature at the initial part of each
of the spine records (e.g., Peak A in Fig. 4) as this feature was
transmitted from the base to the 37th layer up each of the tow-
ers. By using this procedure, the structural speeds at the layer was
measured to be 57.5 m/s for the Al tower and 68 m/s for the con-
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(b)(a) Spine records: Aluminum [M] vs Concrete [P] (�N - space)
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Fig. 5 Comparison of the experimental measurements of Fig. 4 in normalized µN -scale. Shown are the dimensionless velocity
and time Π groups µN B Π1 = v/

√
`µg , Πt = t/

√

`/µg and dimensionless length corresponding to each of the Al/concrete
systems compared for which λ` = `M /`P = 0.23 and λµ = µM /µP = 0.3. (a) Comparison of the spine time records. (b) and (c)
The normalized velocity fields for Al and concrete respectively shown for the same normalized times.

crete tower. It should be noted that the elastic wave speeds of Al
and concrete are two orders of magnitude larger than these speeds
so this phenomenon is clearly different from the transmission of
elastic waves through the structures. Section 7 below elucidates
the physical meaning of these structural signals by presenting a
simple model and comparing it to our experimental observations
and numerical calculations discussed in this work.

We now turn to comparing the two systems in order to examine
consistency across scales. A first visual inspection of both color
maps and spine records reveal an overall signal similarity between
the two systems. However, the level of this similarity can only be
evaluated in detail if these records (both full-field and spine) are
normalized and plotted together in µN -space as shown in Fig. 5. In
particular, the time axis for both the full-field and the spine records
is scaled by dividing time of both model and prototype by

√
`/µg

and particle velocity by
√
`µg with ` and µ taking the values of `M ,

µMs , gM and `P , µPs , gP for the model and prototype, respectively.
The vertical axis of these normalized spine plots represents the
normalized height k`0/` (k ∈ [1, n]) and reduces to 1 at the top of
each system.

We first start by comparing the color and vector plots corre-
sponding to the two systems, now normalized as described above
(see Fig. 5). The structure of these snapshots corresponding to the
same normalized times looks very similar, providing confidence
in the robustness of the scaling (multiscale consistency). Discrete

data from these normalized plots can now be used to produce a
normalized spine record. This record is shown in Fig. 5(c). Figure
5(c) reveals the collapse of the experimental measurements along
the spine into a single spine record in µN -space. Within exper-
imental error, the two time histories are literally on top of each
other for the first 25 out of the 38 levels of the tower. However,
small differences begin to develop at higher levels and at longer
times, as highlighted by the dashed rectangle. Despite these dif-
ferences, it is still quite remarkable that the dynamic response of
two towers of very different heights (one at lab scale and the other
almost two stories tall) and featuring very different block materials
and friction coefficients can be shown to scale properly when µN
scaling is applied.

One reason for the observed differences is likely due to the
inability of the shake table at UC Berkeley to reproduce in detail the
desired, scaled base excitation record of the much smaller Caltech
table with high-fidelity. These two base excitation records, shown
at the bottom of the normalized spine plot of Fig. 5(a), need to
coincide in order to impose similitude at the base. Another reason
may be related to the importance of elasticity of each system. As
discussed in Sec. 5.3, if the materials in the model/prototype pair
are sufficiently elastic, in addition to Eqs. 47 and 48, µN scaling
requires that Eq. 49 should also be satisfied for complete similitude
to be achieved (i.e., for all dimensionless numbers to be equal
between model and prototype). Indeed, for λ` = `M/`P = 0.23,
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Fig. 6 Comparison of the results of LS-DEM simulations in normalized µN -space. (a) An Al/concrete model/prototype pair
(µM = 0.18, µP = 0.6, λµ = 0.3, λ` = 0.23) same as in the experimental comparison presented in Fig. 5. (b) A hypothetical
material/concrete model/prototype pair (µM = 0.18, µP = 0.6, λµ = 0.3, λ` = 0.23) for which also cM = cP

√

λµλ` (cM ∼ 1, 200
m/s, cP ∼ 4, 600 m/s), satisfying the dimensionless requirement arriving from block elasticity.

λµ = µM/µP = 0.3 and for the Al (cM = 6, 400 m/s)/concrete
(cP = 4, 600 m/s) pair, this equation is clearly violated.

In order to eliminate the experimental uncertainties and to also
investigate the necessity of satisfying Eq. 49 in achieving perfect
µN -similitude, we now resort to detailed numerical simulations of
our tower systems. These dynamic simulations, which make use
of the well established LS-DEM methodology, have themselves
been extensively validated [1,31] and can be used as a proxy to the
elaborate and expensive shake table experiments.

We start by using LS-DEM to first investigate similitude in the
same Al/concrete system pair used in the experiments shown in
Figs. 4 and 5. Here, the base excitations of the Al tower can be
perfectly scaled to excite the larger scale concrete tower, avoiding
experimental inconsistencies in base excitations. Figure 6(a) shows
the spine records corresponding to the two calculations again plot-
ted together in the same normalized µN -space used to present the
experimental results in Fig. 5. Again, the agreement between
the Al (red) and concrete (black) time records remains remark-
able until the 27th level and in the remaining levels exhibits some
differences (highlighted by the dashed rectangle), similar to those
observed in its experimental counterpart. The similarity between
the normalized spine records obtained experimentally (Fig. 5(a))
and numerically (Fig. 6(a)), demonstrates that the experimental
difficulties of producing perfectly scaled base excitation records
between models and prototypes are not the reason for the observed
differences outlined in the rectangles.

To further investigate this issue, we now consider a new set of
calculations involving a purely hypothetical model/prototype pair
for which Eq. 49 is satisfied. For this case, the bar wave speed

of the hypothetical model material is cM ∼ 1, 200 m/s, while
the prototype is cP ∼ 4, 600 m/s (concrete) with λ` = 0.23 as
before. Moreover, the coefficient of friction of this hypothetical
material is kept at µMs = 0.18 (as in Al) and that of concrete
µMs = 0.6 as before. The above choices of wave speeds (moduli
and mass densities) affect the inter-block elasticity in the LS-DEM
calculation whose inter-block elastic spring constants are now in
accordance to the last of Eqs. 44. The results of this calculation
are again displayed in µN -space and are shown in Fig. 6(b). This
figure shows that the spines for the model and the prototype are now
virtually indistinguishable at all the tower levels. This remarkable
collapse of the records into a single normalized spine in µN -space
is consistent with the theoretical requirement that in the presence of
elasticity, the last dimensionless group in Eqs. 41 and 42 (leading
to Eq. 49) also needs to be satisfied for complete similitude. In
other words, it demonstrates the ability of µN scaling for frictional
systems in the presence of elasticity to deliver complete multiscale
consistency.

7 The concept of structural speed in frictional
discontinuous structures

When multiblock frictional structures of the type motivating this
study are subjected to seismic excitation at their bases, structural
deformation signals of block acceleration, velocity or displacement
histories are observed to propagate up the structure with very well
defined and experimentally measurable speeds. These speeds are
typically a couple of orders of magnitude slower than the elastic
wave speeds of the individual block material.
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For very “stiff” multiblock systems in which each of the con-
stituent blocks can be considered as being rigid, these signals are
the only available mechanism to transmit information along the
structure given the fact that, within the rigid approximation, the in-
dividual block wave speeds are infinite. Examples of this behavior
was discussed in Sec. 6.

In this section, we describe a simple model whose goal is to
investigate the system parameters which govern the speed of signal
transmission in discrete, frictional structures subjected to primarily
horizontal excitations and to reveal the dependence of this speed
on system variables.

7.1 A simple model for structural signal transmission. We
consider n layers of blocks stacked on top of each other as shown
in Fig. 7. The nominal height of each layer coincides with the
nominal height of each block and is equal to `0. The first layer of
blocks sits on a base of the same material and surface properties
as each of the individual blocks. Any relative motion of the k th

interface, located at the bottom of the k th layer, is resisted by
shear and normal resisting forces operating at each of the inter-
block and block-base interfaces. The normal forces arise due to
contact, are compressive and only resist block interpenetration,
with no resistance offered to interfacial opening between blocks or
layers. The shear and normal forces averaged over the length of
each interface will be denoted by Fk

S
and Fk

N
, respectively. They

represent the “effective” resistance offered by the bottom of each
layer k (1 ≤ k ≤ n) to sliding or interpenetration in the presence of
multiple contact points being generated along each of the interfaces
during the motion history of the multi-layer structure. The total
number of interfaces is equal to the total number of layers and is
thus equal to n, while the total height of the multi-layer structure
is equal to ` = n`0.

For structures composed of blocks which are rigid, or nearly
rigid, the interfaces between blocks and layers is the only mecha-
nism of transmitting deformation signals across the structure. The
collective action of the interfaces determines the time needed for
signals from the base to travel up the height of the tower, and de-
fines the “structural speed” of the system. The effective time that
a signal from the base takes to be transmitted to the top of the
first block will be denoted here as ∆T1. Similarly, ∆Tk will be the
time that a signal takes to travel from the top of block k − 1 to the
top of block k. Since these blocks are rigid, the times ∆Tk are
only characteristic of each interface (both elastic and frictional) and
may also depend on the details of individual block contacts (e.g.,
number of active contact points) at each level. Given the above,
the total time Tk for information generated by the base excitation
to reach the top of the k th layer of blocks can now be expressed
by:

Tk =

k∑
i=1
∆T i, (50)

where 1 ≤ k ≤ n. This time is also equal to the total height of the
first k layers, k`0, divided by the average speed, Vk , of a structural
signal arrival at the top of the k th level (i.e., Tk = (k`0)/Vk ). By
definition and by using Eq. 50, we can now write:

Vk B

[
1

1
k

∑k
i=1 ∆T i

]
`0. (51)

The average speed Vk will be called the “structural speed” of a
signal generated at the base and arriving at the top of level k. This
speed is not necessarily constant and will in general be a function
of height or, equivalently, it may be thought of as a discrete func-
tion of k. Eq. 51 shows that Vk depends on the arithmetic mean
of the times ∆T i needed for each interface i (1 ≤ i ≤ k) to transmit
a signal to the rigid block i situated just above it. Since the struc-
tural speed Vk at layer k is a speed that can be measured (see Figs.
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Fig. 7 The combination of elastic springs (normal and hori-
zontal) and frictional element (horizontal) providing restoring
forces between rigid blocks, as assumed in formulating the
model for structural signal transmission. This model is con-
sistent with LS-DEM methodology.

4(a) and (b)), it is useful to relate it to basic elastic and frictional
interfacial contact properties of force transmission at each of the k
layers with the goal of providing scaling relations between “simi-
lar” model/prototype systems. To achieve this, we look at each of
the k layer interfaces and adopt the physical description employed
by the popular LS-DEM model [31,32] which has been successful
in describing the mechanism of force transmission between rigid
blocks or grains in frictional contact. With this methodology in
mind, the time ∆Tk can be identified with tk

f
, where tk

f
is the time

needed to commence frictional sliding at the k th interface (i.e.,
∆Tk = tk

f
).

Within the LS-DEM framework, single normal contacts are first
resisted by the compression of elastic springs of normal stiffness
KN , while sliding is first resisted by elastic springs of shear stiff-
ness KS until a threshold corresponding to a constant friction co-
efficient is reached. In our simple model, these stiffnesses will
represent the average stiffness of each block-to-block interface and
will be considered the same at all interfaces.

Within the present idealization, tk
f
is the time when the average

value of sliding at the bottom of the k th layer becomes large enough
for the average shear resisting force Fk

S
to reach µks Fk

N
, where µks is

the friction coefficient of the k th interface, thus entering the sliding
regime at the bottom of layer k. This time defines the instant
beyond which substantial sliding may occur at constant friction
coefficient µks .

To estimate tk
f
, we recall that within the elastic regime dFk

S
=

KSv
k
S

dt, where dFk
S
is the increment of the shear resistance, vk

S
is

the relative average sliding speed between the bottom of layer k
and the top of layer k−1, and dt is the time increment. Integration
of this expression from t = 0 to t = tk

f
, at which time Fk

S
= µks Fk

N
,

gives:

Fk
S (t

k
f ) =

∫Fk
S
=µk

s F
k
N

Fk
S
=0

dFk
S = µ

k
s Fk

N (t
k
f ) = KS

∫ tk
f

0
vkS (t) dt . (52)

If we now define δ̇k
S
as the time-averaged relative sliding speed

between the k th and the k − 1 layers as

δ̇kS B
1
tk
f

∫ tk
f

0
vkS (t) dt, (53)

then Eqs. 52 and 53 yield:

Fk
S (t

k
f ) = µ

k
s Fk

N (t
k
f ) = KS δ̇

k
S tkf . (54)
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We further know that according to the LS-DEM model, the normal
force Fk

N
at time tk

f
can be expressed as [1,31]:

Fk
N = (KN dk − ck δ̇kN ), (55)

where dk and δ̇k
N

are averages (over the k th interface) of the in-
terpenetration distance and the relative normal velocity between
blocks, respectively, while ck is the average of the coefficient of
restitution at the k th level. Eqs. 54 and 55 now yield:

µks (KN dk − ck δ̇kN ) = KS δ̇
k
S tkf . (56)

By assuming that KN dk � ck δ̇k
N
, an assumption which is strictly

true for shear-dominated motions between blocks (i.e., δ̇k
N
= 0) or

for inelastic collisions of blocks (i.e., ck = 0), and by recalling that
∆Tk = tk

f
, Eq. 56 can be solved for ∆Tk to yield:

∆Tk =

(
KN

KS

)
dk µks
δ̇k
S

. (57)

By substituting Eq. 57 into Eq. 51, the structural speed Vk can
now be expressed as follows:

Vk =
k`0∑k

i=1

(
KN
KS

)
diµi

s

δ̇ki

, (58)

where Vk is the speed of a structural signal arriving at the top of
the k th layer for every k ∈ [1, n].

7.2 Consequences of imposing similitude to the functional
form and scaling of structural speeds. The case of uniform
coefficient of friction. After establishing a general expression for
the structural speed Vk , our goal now becomes to use the scaling
relations derived in Sec. 4.3 and 5.2 for systems of blocks featuring
frictional restoring forces in the presence of some system elasticity
to also investigate the dependence of ∆Tk and Vk on geometry,
and to thus derive scaling laws governing the interrelation of the
structural speeds of “similar” model/prototype systems. In this
section, we first assume that the coefficient of friction for each
interface is the same (i.e., µks = µs), but will in general be different
between a model and a prototype system (i.e., µMs , µPs ). We will
then generalize this result to friction coefficients which vary from
interface to interface.

To scale the structural speeds, we first recall that the system
dynamics in these cases are described in a dimensionless form by
Eq. 41 with µ = µs (for a frictional system) as:

g̃(Π1;Π2;Π3) = g̃

(
v√
`µsg

;
a
µsg

;
K

`2µsρg

)
= 0, (59)

where the dimensionless numbers Π1,Π2 and Π3 will govern the
scaling according to µN -similitude.

The first dimensionless number Π1 in Eq. 59 requires that for
a system of total height ` = n`0 all particle speeds, and as a
consequence, the relative sliding speed δ̇k

S
at each level will be

proportional to
√
`µsg and will have the form

δ̇kS =
√
`µsg Π

k
1 (Π2;Π3). (60)

In Eq. 60 above, Πk
1 is a position dependent (through k) function

of the second and third dimensionless groups Π2 and Π3, a fact
which reflects the scaling of the base motions to achieve simili-
tude between a model and prototype system, i.e., (v/

√
`µsg)

M =

(v/
√
`µsg)

P . The dependence of Πk
1 on k merely recognizes the

possibility of variations of average sliding speed from layer to layer.
Furthermore, similitude as described by Eq. 59 also requires

that each of the elastic stiffnesses KN and KS scale as `2µsρgΠ3,
while their ratio KN /KS will be a constant dimensionless number
R which will remain the same between a model/prototype system.
This ratio is typically chosen to be of the order of unity in LS-DEM
calculations of rigid block or particle systems [31].

Finally, the vertical interpenetration distance dk is expected to
simply scale with the characteristic block length `0 and to also vary
from layer to layer as follows:

dk = `0 Π
k
0 (Π1;Π2;Π3), (61)

where Πk
0 is a dimensionless function of the three dimensionless

variables of the system.
By substituting Eqs. 60 and 61 into Eq. 57, the average time

∆Tk for transmitting a frictional signal across the k th layer be-
comes:

∆Tk = `0

(
µs
`g

)1/2
Π
k, (62)

where ` = n`0 and Πk (Π1;Π2;Π3) B RΠk
0 /Π

k
1 is an unknown

function of Π1,Π2 and Π3.
Further substitution of Eqs. 60 and 61 into Eq. 58 gives the

expression for the structural speed at level k as:

Vk =

(
`g

µs

)1/2
[

k∑k
i=1 Π

i

]
. (63)

The quantity in brackets in the above equation is a function of level
k, and as such it represents the height variation of Vk as this is
influenced by the additive contributions of each of the preceding
layers. Its denominator is a function of the dimensionless groups
Π1,Π2 and Π3 only.

We will now consider a model (M) and prototype (P) system
such that the base excitations observe (v/

√
`µsg)

M = (v/
√
`µsg)

P

and (a/µsg)M = (a/µsg)P , and also (K/`2µsρg)M =

(K/`2µsρg)P . For such systems ΠM
1 = ΠP

1 , ΠM
2 = ΠP

2 , and
ΠM

3 = Π
P
3 , ensuring full µN -similitude at each level k as long as

the two systems are geometrically similar, i.e., they have the same
number of interfaces nM = nP . As a result, we have[

k∑k
i=1 Π

i

]M
=

[
k∑k

i=1 Π
i

]P
, (64)

since for each corresponding layer, kM = kP , and [Πk ]M = [Πk ]P

which is true, since Πk is only a function of Π1, Π2 and Π3 and
these three must be invariant for the systems to remain “similar”.

By applying Eq. 63 to both systems, dividing by sides, invoking
Eq. 64 and recalling that ` = n`0 and that nM = nP , one gets a
scaling relation between the structural speeds (Vk )M and (Vk )P

as follows:

(Vk )P = (Vk )M

(
`P0
`M0

)1/2 (
gP

gM

)1/2 (
µMs

µPs

)1/2

, (65)

∀k ∈ [1, n]. Equation 65 holds for each of the individual layers k
between model and prototype does not assume that the structural
speed is constant at each level. However, it strictly holds when
comparing “similar” model/prototype systems such that their base
excitations have been scaled to assure µN -similitude. Finally, it
should be noted that in the above relation the ratio `P0 /`

M
0 is also

equal to `P/`M (the ratio of total heights) since for Eq. 65 to
strictly hold, the two structures also need to be geometrically sim-
ilar, i.e., nM = nP .
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7.3 Generalization to different coefficients of friction at
each level. Here we will generalize the results obtained in Sec.
7.2 to include arbitrary variations of friction coefficient from layer
to layer, as long as these variations are kept “similar” between a
model and a prototype. To do so, we express the coefficient of
friction µks at the bottom interface of the k th layer as µks = µ0 µ̂(k)
where µ0 is a common amplitude, say its value at the bottom layer
of the structure, while µ̂(k) represents its discrete height variation
with k, from k = 1 to k = n. Note that the discussion of struc-
tural speed presented in Sec. 7.1 and in particular Eqs. 57 and 58
have already been derived by considering different coefficients of
friction µks at each layer. In this general case, and if the height vari-
ations of the frictional coefficients µ̂(k) are purposefully kept the
same, i.e., µ̂(k)P = µ̂(k)M , the sliding speed at the k th interface
will have the form:

δ̇kS =
√
`µ0g Π

k
1 (Π1;Π2;Π3), (66)

provided that the excitation at the base are related by
(v/

√
`µsg)

M = (v/
√
`µsg)

P and (a/µsg)M = (a/µsg)P

and (K/µsρg`2)M = (K/µsρg`2)P , while µ̂(k)M = µ̂(k)P , i.e.,
Π1 and Π2 are evaluated for µ = µ0.

Here, the interpenetration distance of Eq. 61 becomes:

dk = `0 Π
k
0 (Π1;Π2;Π3). (67)

By substituting Eqs. 66 and 67 into Eq. 57, we get

∆Tk = `0

(
µ0
(n`0)g

)1/2 √
µ̂(k) Πk, (68)

where Πk (Π1;Π2;Π3) B RΠk
0 /Π

k
1 and R is the constant ratio of

stiffnesses KN /KS as described in Sec. 7.2. Further substitution
of Eq. 68 into Eq. 58 yields:

Vk =

(
n`0g
µ0

)1/2
[

k∑k
i=1

√
µ̂(i) Πi

]
, (69)

where the quantity in square brackets represents the discrete vari-
ation of Vk along the height.

If similitude is assured between model/prototype systems, here
again, the quantity in brackets remains invariant between the model
and the prototype and as a result:

(Vk )P = (Vk )M

(
`P0
`M0

)1/2 (
gP

gM

)1/2 (
µM0
µP0

)1/2

, (70)

which is the equation relating the structural speeds (Vk )M and
(Vk )P for each level k ∈ [1, n]. Eqs. 69 and 70 are the gener-
alizations of Eqs. 63 and 65 for arbitrarily varying coefficients
of friction µks = µ0 µ̂(k) along the height of the structure and re-
duce to their constant coefficient equivalent when µ̂(k) = 1 and
µks = µ0 = µs .

7.4 The special case of constant structural speed. Here, we
briefly examine the particular case of systems of identical friction
coefficients between layers (µks = µs) in which the structural speed
is measured to be constant. In such systems, the structural signal
reaches each level with the same average speed V such that:

Vk = V, ∀k ∈ [1, n]. (71)

Applying the above experimentally supported hypothesis for k = 1
and k = 2 requires that V1 = V2 and Eq. 63 gives:

1
Π1 =

2
Π1 + Π2 , (72)

which can only hold if Π1 = Π2. However, since Eq. 71 holds for
all k ∈ [1, n], its sequential application implies that

Π
k = Π, (73)

where Π is independent of level k in the structure but is undeter-
mined by this analysis.

By substituting Eq. 73 into Eq. 63, we obtain the value of this
constant structural speed as:

Vk = V =
(
`g

µs

)1/2 1
Π
, (74)

where Π still remains an unknown function of the dimensionless
groups Π1,Π2 and Π3. Furthermore, in this special case the struc-
tural speed arriving at each level k is constant and as such, it is
insensitive to the number of previous interfaces lying below level
k in the stack. One would also expect that Π is itself insensitive
to the above discussed dimensionless groups and to be just a real
number. Indeed, this expectation is rationalized by considering the
subset of the structure composed of only layers above level k. This
subset experiences excitations which are different than those of the
base, yet its structural speed remains the same as in the layer below
and is also independent of the exact nature of the base excitation.
If this insensitivity is true, one could compare model/prototype
systems of various total heights ` and in which strict similitude is
not imposed at their base since Π is not sensitive to the value of
the three invariants Π1,Π2, and Π3. Furthermore, since V is in-
sensitive to the total number of interfaces n, one can even provide
scaling relations for V between model/prototype systems featuring
different numbers of interfaces, i.e., nM , nP , rather than on their
total heights.

The scaling laws for such systems can now be obtained by Eq.
74 as:

(V)P = (V)M
(
`P

`M

)1/2 (
gP

gM

)1/2 (
µMs

µPs

)1/2

. (75)

which is a relation very similar to Eq. 65 or 70 but with `0 replaced
by the total height ` without requiring that nP = nM .

7.5 Discussion and experimental validation. We first ob-
serve that the scaling Eqs. 65 and 70 providing the ratio VP/VM

of the structural speeds (constant or not) of a model to a prototype
in various cases, are very similar in structure. They also share
the interesting property that they only involve ratios of lengths and
friction coefficients (for the same gravitational environment) with-
out any dependence on elastic material properties such as KN ,KS
or mass density. In general, this property only holds for the ratios
VP/VM and may not be true for each of the structural speeds (see
Eqs. 63 or 69) which may also depend on density and elasticity
through the dimensionless groups Π3 = K/µsρg`2 or c2/`µsg.
The particular special case of constant structural speed is however
noteworthy, since both the ratio and the actual values of V may only
depend on `, g and µs with no sensitivity on density or elasticity
as discussed in Sec. 7.4.

In order to experimentally validate the above scaling relations
we refer to the spine records of Fig. 4 for the Al/concrete
model/prototype system pair describes in Sec. 6. For this par-
ticular model/prototype pair, `M/`P = 0.23, gM/gP = 1, while
µMs /µ

P
s = 0.3, while the structural speed near the top of the Al

tower (k = 37) was measured to be (V37)M = 57.5 m/s. By sub-
stituting the above values into Eq. 65, which does not assume that
the structural speed is constant, we predict that the structural speed
of the concrete tower at the equivalent block level should be equal
to (V37)P ∼ 65.6 m/s. This theoretical prediction is very close to
the measured structural speed of 67.9 m/s recorded at the top of
the concrete tower.
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Additional measurements of structural speeds can also be used
to demonstrate the predictive nature of scaling Eq. 65. Such mea-
surements are reported in [29,30]. In particular, measurements of
structural speeds on wooden towers reported in these references
allow us to compare with the speeds reported for the Al system
described in Sec. 6. These wooden towers are geometrically iden-
tical to the Al towers, but feature a friction coefficient of 0.63.
By considering the Al/wood system as the model/prototype system
pair, with λ` = 1, λµ = µMs /µ

P
s = 0.18/0.63 = 0.29 and by us-

ing the measured value (V37)M = 57.5 m/s for Al, Eq. 65 now
predicts (V37)P = 31.5 m/s for the wooden prototype. This predic-
tion is very close to the value of 33.5 m/s directly measured in [29]
by means of both full-field DIC and point-wise laser velocimeter
records.

The accuracy of these predictions involving geometrically sim-
ilar systems at different scaled and/or coefficients of friction, pro-
vides confidence on the validity of the scaling equations and the
ability of our simple model to capture the physics of structural
signal transmission in discrete multiblock systems across scales
(consistency).

8 Concluding remarks
Unlike continuous systems which are prevalent in the modern

build environment, very little is known regarding the identifica-
tion of dimensionless numbers capable of accurately capturing the
physical mechanisms governing the dynamic deformation and scal-
ing in discontinuous Multiblock Tower Structures (MTS). Indeed,
the presence of numerous interfaces in such systems governs the
overall dynamic response and as a result, particular attention must
be paid to physics which determine the interface behavior.

The current work introduces and validates a general theoretical
framework describing the behavior of MTS when subject to iner-
tial loading and introduces a dimensionless “Arbitrary Restoring
Force Number” (RN

F
) with its associate scaling laws. This general

framework allows us to consistently explore the effect of differ-
ent types of interfaces on similitude, revealing their similarities
and differences. Examples of interface types include, but are not
limited to: frictional, gravitational, cohesive, viscous, elastic, and
mixed restoring forces. In addition to interfacial mechanics, the
analysis also allows us to explore the consequences of intra-block
elasticity, thus accounting for block deformability.

Not surprisingly, the analysis shows that in most cases and with
only a few notable exceptions, classical Cauchy and Froude num-
ber similitudes currently employed in seismic testing of structures
fail to provide appropriate scaling laws since they do not accu-
rately reflect the detailed physical restoring force generation and
dissipation at the interfaces. This result has immediate practi-
cal consequences on the design of small-scale model experiments
whose purpose is to study the full-scale seismic performance of
system prototypes. Here, our analysis provides specific guidelines
on material selection and laws to be employed for scaling the ap-
plied seismic excitation for each type of interface. Equivalently,
our methodology guides the appropriate choices of both interfacial
and bulk material properties of numerical models (e.g., Discrete
Element Models) ensuring their predictive ability when applied to
various length and time scales.

Particular attention is paid to the special case of discontinu-
ous structures featuring “frictional” interfaces, motivated by MTS
currently proposed for renewable energy storage applications (po-
tential energy batteries). To evaluate the resilience of such
frictional systems to seismic excitations, we introduce the fric-
tional/gravitational dimensionless “mu-Number” (µN ) and explore
the concept of µN -similitude. This concept is used to design a
series of appropriately scaled model experiments at two different
length scales, allowing us to validate and to demonstrate the use-
fulness of µN -similitude in describing the dynamics of frictional
discontinuous structures of various material properties and scales,
ensuring multiscale consistency.

Finally, motivated by multiscale experimental observations, we
introduce the concept of “structural speed” and present a simple
model explaining the mechanics of structural signal transmission
in frictional multiblock systems.

The results presented in this study are only a part of a wider
campaign undertaken by our group. They describe the theoretical
development and validation of basic tools and concepts necessary
for carrying out a coordinated theoretical, experimental and numer-
ical campaign designed to explore the seismic resilience of various
types of discontinuous Multiblock Tower Structures.
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